
Artificial Intelligence

First-order predicate logic
Chapter 8, AIMA

Why first order logic (FOL)?

•  First order logic (predicate calculus)
can express a lot more of common-sense
knowledge in a reasonable manner

•  Propositional (boolean) logic is too
limited for a lot of (even simple) domains
–  complex environments cannot be described in

a sufficiently natural and concise way

•  Logic is a language we use to express
knowledge in rigorous manner
–  consists of syntax and semantics

Limitations of propositional logic

1 2 3 4

1

2

3

4

C
B

Wumpus in (3,1) ⇒ Stench in (3,2)
W31⇒ S32

Propositional logic needs to express this
for every square in the Wumpus world.

A = John has a bike ∧ B = John has a car

Propositional logic cannot express that these two
statements are about the same person.

Block B is on top of C ⇒ ¬(C is free to be moved)

If we have more blocks, we need a lot of statements like this.

What we want:

1 2 3 4

1

2

3

4

C
B

”If there is a Wumpus in square x, then there
will be a stench in all neighboring squares.”

Say it once and for all.

”We cannot move an object if
there is something on top of it.”

”John has a bike and a car.”

...

”People with mutliple vehicles watch
weather forecasts more often.”

•  Non-logical symbols (depend on interpretation)
–  constants (objects): man, woman, house, car,

conflict, slawek, stefan, denni, halmstaduniversity, ...

– predicates (relations between objects): red,
green, nice, larger, above, below, schedule, itinerary, ...

–  functions: fatherOf, brotherOf, beginningOf, birthday,
employer, flightNumber, slideTitle, man, woman, …

constants are actually a special case of functions

•  Logical symbols (always the same meaning)
–  logical connectives: and, or, implication, etc.
– quantifiers: for all (∀) and there exists (∃)
– an infinite set of variables: x, y, z, …
– equality symbol and truth constants: =, T, F

First-order logic (FOL)
Syntax

Constants

A, 125, Q, John, KingJohn, TheCrown, EiffelTower, D215,
Wumpus, HH, TravelAgent,...

Function constants (of various arities)
FatherOf1(KingJohn), LeftLegOf1(John), NeighborOf1(HH),

 DistanceBetween2(A,B), Times2(2,4), Price2(Fruit,Weight),
 Itinerary3(DepartureAirport, ArrivalAirport, DepartureTime),
 KingJohn0(), A0(), 1250(), HH0(), Agent0(), ...

Relations/predicates (of various arities)
Unary predicates (properties): Orange1, Nice1, Rich1, ...

 N-ary relations: Parent2, Brother2, Married2, Before2, ...

First-order logic (FOL)
Syntax

The superscript denotes the ”arity” = the number of arguments

R = RichardTheLionheart
J = KingJohn
C = Crown

Function constants
LeftLegOf(R)
LeftLegOf(J)

Relations (predicates)
Person(R)
Person(J)
King(J)
Crown(C)

Brother(J,R)
Brother(R,J)
OnHead(C,J)

Object constants

Unary

Binary

Term

1.  An object constant is a term
2.  A complete function constant is a term

(complete = all arguments are provided
and each one of them is a term)

3.  A variable is a term.

Intuitively, a term corresponds to a
well-defined object in the world.

First-order logic (FOL)
Syntax

Well-Formed Formula (wff)

1.  A complete predicate symbol is a wff
(complete = all arguments are provided and
each one of them is a term)

2.  An equality between two terms is a wff
3.  Negation of a wff is a wff
4.  Two wffs connected by a connective is a wff
5.  Quantifier (∀ or ∃ with a variable) followed

by a wff is a wff.

First-order logic (FOL)
Syntax

Intuitively, a wff is something that
could be true or false.

First-order logic (FOL)
Syntax

Variables and quantifiers

Variables refer to unspecified objects in the
domain. We will denote them by lower
case letters (at the end of the alphabet)
x, y, z, ...

Quantifiers constrain the meaning of a
variable in a sentence. There are two
quantifiers:

”For all” (∀) and ”There exists” (∃)
Universal quantifier Existential quantifier

Variables in wff

1.  Variable is said to be free in a wff if it
occurs in this wff and there is no quantifier
binding this variable
Brother(x,y) ∧ King(x) ∧ Mother(x,y) ⇒ Woman(x)

2.  Variable is said to be bound in a wff if it
occurs in this wff and it is not free
∀x∀y Mother(x,y) ⇒ Woman(x)
∀y∃x Mother(x,y)

First-order logic (FOL)
Syntax

First-order logic (FOL)
Syntax

Sentence

A well formed formula without any free
variables is called a sentence
– Atomic sentence

A complete predicate symbol (relation)
Brother(RichardTheLionheart,KingJohn), Dead(Mozart),
Married(CarlXVIGustaf,Silvia), Orange(Block(C)),...

– Complex sentence
Formed by sentences and connectives
Dead(Mozart) ∧ Composer(Mozart),
¬King(RichardTheLionheart) ⇒ King(KingJohn),
King(CarlXVIGustaf) ∧ Married(CarlXVIGustaf,Silvia) ⇒

⇒ Queen(Silvia)

First-order logic (FOL)
Semantics

Semantics assigns truth values to sentences
–  terms and wffs that are not sentences do not,
in general, have any truth values

The truth value of atomic sentences comes
 from the model/interpretation

–  just like in propositional logic
The truth value of complex sentences is

 determined by truth tables
– Quantifiers need to take into account
domain of discourse: ∀X∃Y X = Y * Y

King(X)

King(Richard)

Example: Block world
On(A,B) True
On(B,C) True
On(B,A) False
On(C,B) False
On(C,A) False
On(A,C) False
Clear(A) True
Clear(B) False
Clear(C) False
Under(B,A) True
Under(C,B) True
Under(A,B) False
Under(C,A) False
Under(B,A) ∧ Over(B,C) True
Under(C,B) ∨ Under(C,A) True

C
B

A

First-order logic (FOL)
Syntax

Variables and quantifiers
(∀ ”For all...”)

∀x King(x) ⇒ Person(x) ”All kings are persons”

∀x,y Brother(x,y) ⇒ Sibling(x,y) ”All brothers are siblings”

∀x,y Son(x,y) ∧ King(y) ⇒
Prince(x)

”All sons of kings are princes”

∀x AIstudent(x) ⇒ Overworked(x) ”All AI students are
overworked”

Slide from S. Russel @ Berkeley

∀<variables> <wff>

Everyone at Berkeley is smart:

∀x At(x, Berkeley) ⇒
Smart(x)

„Everybody is at Berkeley and everybody is smart”

∀xP is equivalent to the conjunction of instantiations of
P

 At(KingJohn, Berkeley) ⇒ Smart(KingJohn)
 ∧ At(Richard, Berkeley) ⇒ Smart(Richard)
 ∧ At(Berkeley, Berkeley) ⇒ Smart(Berkeley)
 ∧ …

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main
connective:

∀x At(x, Berkeley) ∧ Smart(x)

First-order logic (FOL)
Syntax

Variables and quantifiers
(∃ ”There exists...”)

∃x King(x) ∧ Person(x) ”There is a king who is a
person / There is a person
who is a king”

∃x Loves(x,KingJohn) ”There is someone who loves
King John”

∃x ¬Loves(x,KingJohn) ”There is someone who does
not love King John”

∃x AIstudent(x) ∧ Overworked(x) ”There is an AI student that is
overworked”

Slide from S. Russel @ Berkeley

∃<variables> <wff>

Someone at Stanford is smart:

∃x At(x, Stanford) ∧ Smart(x)

This is true whenever there is somebody not at Stanford

Common mistake: using ⇒ as the main
connective:

∃x At(x, Stanford) ⇒ Smart(x)

∃xP is equivalent to the disjunction of instantiations of
P

 At(KingJohn, Stanford) ∧ Smart(KingJohn)
 ∨ At(Richard, Stanford) ∧ Smart(Richard)
 ∨ At(Berkeley, Stanford) ∧ Smart(Berkeley)
 ∨ …

Typically, ∧ is the main connective with ∃

First-order logic (FOL)
Syntax

Nested quantifiers

∀x ∃y Loves(x,y) ”Everybody loves somebody”

∃y ∀x Loves(x,y) ”Someone is loved by everyone”

∀x ∃y Loves(y,x) ”Everyone is loved by someone”

∃y ∀x Loves(y,x) ”Someone loves everyone”

∀x ∃y Loves(x,y) ∧ (y ≠ x) ”Everybody loves somebody else”

First-order logic (FOL)
Syntax

Nested quantifiers

∀x ∃y Loves(x,y) ≠ ∃y ∀x Loves(x,y)

”Everybody loves somebody” ≠ ”Someone is loved by everyone”

∀x ∃y Loves(y,x) ≠ ∃y ∀x Loves(y,x)

”Everyone is loved by someone” ≠ ”Someone loves everyone”

The order of ∀ and ∃ matters!

Quantifier duality

DeMorgan’s rules

∀x ¬P(x) ≡ ¬∃x P(x)
¬∀x P(x) ≡ ∃x ¬P(x)
∀x P(x) ≡ ¬∃x ¬P(x)
∃x P(x) ≡ ¬∀x ¬P(x)

Ponder these for a while...

Family fun
Family axioms:
”A mother is a female parent”
”A husband is a male spouse”
”You’re either male or female”
”A child’s parent is the parent of the child” (sic!)
”My grandparents are the parents of my parents”
”Siblings are two children who share the same parents”

”A first cousin is a child of the siblings of my parents”

...etc.

Family theorems:
Sibling is reflexive

© 1998, Jon A. Davis

Write these in FOL

Family fun
Family axioms:
∀m,c (m = Mother(c)) ⇔ (Female(m) ∧ Parent(m,c))
 or ∀c Female(Mother(c)) ∧ Parent(Mother(c),c)
∀w,h Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w)
∀x Male(x) ⇔ ¬Female(x)
∀p,c Parent(p,c) ⇔ Child(c,p)
∀g,c Grandparent(g,c) ⇔ ∃p (Parent(g,p) ∧ Parent(p,c))
∀x,y Sibling(x,y)⇔(∃p (Parent(p,x)∧Parent(p,y)))∧(x ≠ y)
∀x,y FirstCousin(x,y) ⇔ ∃p,s (Parent(p,x) ∧ Sibling(p,s) ∧

Parent(s,y))

Family theorems:
∀x,y Sibling(x,y) ⇔ Sibling(y,x)

© 1998, Jon A. Davis

Spouse(Gomez,Morticia)
Parent(Morticia,Wednesday)
Sibling(Pugsley,Wednesday)
Sister(Ophelia,Morticia)
FirstCousin(Gomez,Itt)
∃p (Parent(p,Morticia) ∧ Sibling(p,Fester))

Family fun
Family axioms:
”A mother is a female parent”
”A husband is a male spouse”
”You’re either male or female”
”A child’s parent is the parent of the child” (sic!)
”My grandparents are the parents of my parents”
”Siblings are two children who share the same parents”

”A first cousin is a child of the siblings of my parents”

...etc.

Family theorems:
Sibling is reflexive

© 1998, Jon A. Davis

Matematical fun

•  ”The square of every negative integer is
positive”
a)  ∀x [Integer(x) ∧ (x > 0) ⇒ (x2 > 0)]
b)  ∀x [Integer(x) ∧ (x < 0) ⇒ (x2 > 0)]
c)  ∀x [Integer(x) ∧ (x ≤ 0) ⇒ (x2 > 0)]
d)  ∀x [Integer(x) ∧ (x < 0) ∧ (x2 > 0)]

a)  ”Not every integer is positive”
a)  ∀x [¬Integer(x) ⇒ (x > 0)]
b)  ∀x [Integer(x) ⇒ (x ≤ 0)]
c)  ∀x [Integer(x) ⇒ ¬(x > 0)]
d)  ¬∀x [Integer(x) ⇒ (x > 0)]

Borrowed from http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/logic/logic7.html

Matematical fun

•  ”The square of every negative integer is
positive”
a)  ∀x [Integer(x) ∧ (x > 0) ⇒ (x2 > 0)]
b)  ∀x [Integer(x) ∧ (x < 0) ⇒ (x2 > 0)]
c)  ∀x [Integer(x) ∧ (x ≤ 0) ⇒ (x2 > 0)]
d)  ∀x [Integer(x) ∧ (x < 0) ∧ (x2 > 0)]

a)  ”Not every integer is positive”
a)  ∀x [¬Integer(x) ⇒ (x > 0)]
b)  ∀x [Integer(x) ⇒ (x ≤ 0)]
c)  ∀x [Integer(x) ⇒ ¬(x > 0)]
d)  ¬∀x [Integer(x) ⇒ (x > 0)]

Borrowed from http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/logic/logic7.html

The Wumpus world revisited

1 2 3 4

1

2

3

4

∀ x,y,z,w Adjacent([x,y],[z,w]) ⇔ ([z,w] ∈ {[x+1,y],[x-1,y],[x,y+1],[x,y-1]})
∀s Breezy(s) ⇔ ∃r (Adjacent(r,s) ∧ Pit(r))
∀s EvilSmelling(s) ⇔ ∃r (Adjacent(r,s) ∧ Wumpus(r))
∀s (¬EvilSmelling(s) ∧ ¬Breezy(s)) ⇔ ∀r (Adjacent(r,s) ∧ Safe(r))

∀s,t (At(Agent,s,t) ∧ Breeze(p,t)) ⇒ Breezy(s)
∀s,t (At(Agent,s,t) ∧ Stench(p,t)) ⇒ EvilSmelling(s)

Object constants:
 Square s = [x,y], Agent, Time (t),
 Percept p = [p1,p2,p3,p4,p5], Gold
Predicates:
 Pit(s), Breezy(s), EvilSmelling(s),
 Wumpus(s), Safe(s), Breeze(p,t),
 Stench(p,t), Glitter(p,t), Wall(p,t),
 Scream(p,t), Adjacent(s,r),
 At(Agent,s,t), Hold(Gold,t)

(There are other possible representations)

Compare to the 275 rules in boolean KB!

Puzzles with nested quantifiers

•  Are both these statements true?

yxxy
yxyx

<∀∃

<∃∀
2

2

 TRUE

FALSE

Puzzles with nested quantifiers

•  Are both these statements true?

0
0

=+∀∃

=+∃∀

yxxy
yxyx TRUE

FALSE

Translations...

Translate the following sentences to a first
order logic expression

1.  The product of two negative integers is

positive

2.  The difference of two negative integers is

not necessarily negative

Examples borrowed from Aaron Blomfield @ University of Virginia & Kenneth Rosen, Discrete Math and Its Applications, 5th edition. McGraw Hill, 2003

Translations...

Translate the following sentences to a first
order logic expression

1.  The product of two negative integers is

positive

2.  The difference of two negative integers is

not necessarily negative

Examples borrowed from Aaron Blomfield @ University of Virginia & Kenneth Rosen, Discrete Math and Its Applications, 5th edition. McGraw Hill, 2003

0)()()0()0(>⋅⇒∧∧<∧<∀∀ yxyIntegerxIntegeryxyx

Translations...

Translate the following sentences to a first
order logic expression

1.  The product of two negative integers is

positive

2.  The difference of two negative integers is

not necessarily negative

Examples borrowed from Aaron Blomfield @ University of Virginia & Kenneth Rosen, Discrete Math and Its Applications, 5th edition. McGraw Hill, 2003

0)()()0()0(>⋅⇒∧∧<∧<∀∀ yxyIntegerxIntegeryxyx

)0()()()0()0(>−∧∧∧<∧<∃∃ yxyIntegerxIntegeryxyx

Translations...

Translate the following sentences to a first
order logic expression

1.  The product of two negative integers is

positive

2.  The difference of two negative integers is

not necessarily negative

Examples borrowed from Aaron Blomfield @ University of Virginia & Kenneth Rosen, Discrete Math and Its Applications, 5th edition. McGraw Hill, 2003

0)()()0()0(>⋅⇒∧∧<∧<∀∀ yxyIntegerxIntegeryxyx

)0()()()0()0(>−∧∧∧<∧<∃∃ yxyIntegerxIntegeryxyx

Why not ∧ ?

Why not ⇒ ?

Translations...

Translate the following sentences to a first
order logic expression

1.  The product of two negative integers is

positive

2.  The difference of two negative integers is

not necessarily negative

Examples borrowed from Aaron Blomfield @ University of Virginia & Kenneth Rosen, Discrete Math and Its Applications, 5th edition. McGraw Hill, 2003

0)()()0()0(>⋅⇒∧∧<∧<∀∀ yxyIntegerxIntegeryxyx

)0()()()0()0(>−∧∧∧<∧<∃∃ yxyIntegerxIntegeryxyx

Why not ∧ ?

Why not ⇒ ?

Can we write ∀y∀x ?

Can we write ∃y∃x ?

Translations...

Translate the following sentences to a first
order logic expression

1.  There is a student at HH who has taken

every mathematics course offered at HH.

2.  Every salesman has at least one apple

Translations...

Translate the following sentences to a first
order logic expression

1.  There is a student at HH who has taken

every mathematics course offered at HH.

2.  Every salesman has at least one apple

[]),()()(yxTakenyHsCourseAtHMathematicyxHStudentAtHx ⇒∀∧∃

Translations...

Translate the following sentences to a first
order logic expression

1.  There is a student at HH who has taken

every mathematics course offered at HH.

2.  Every salesman has at least one apple

[]),()()(yxTakenyHsCourseAtHMathematicxHStudentAtHyx ⇒∧∀∃

Translations...

Translate the following sentences to a first
order logic expression

1.  There is a student at HH who has taken

every mathematics course offered at HH.

2.  Every salesman has at least one apple

)(),()(yAppleyxHasyxSalesmanx ∧∃⇒∀

[]),()()(yxTakenyHsCourseAtHMathematicxHStudentAtHyx ⇒∧∀∃

Translations...

Translate the following sentences to a first
order logic expression

1.  There is a student at HH who has taken

every mathematics course offered at HH.

2.  Every salesman has at least one apple

)(),()(yAppleyxHasxSalesmanyx ∧⇒∃∀

[]),()()(yxTakenyHsCourseAtHMathematicxHStudentAtHyx ⇒∧∀∃

∃ y∀ x Salesman (x)⇒ Has(x , y)∧ Apple (y)

Translations...

Translate the following sentences to a first
order logic expression

1.  There is a student at HH who has taken

every mathematics course offered at HH.

2.  Every salesman has at least one apple

[]),()()(yxTakenyHsCourseAtHMathematicxHStudentAtHyx ⇒∧∀∃

Translations...

Translate the following sentences to a first
order logic expression

1.  There is a student at HH who has taken

every mathematics course offered at HH.

2.  Every salesman has at least one apple

))(,()(yApplexHasxSalesmanyx ⇒∃∀

[]),()()(yxTakenyHsCourseAtHMathematicxHStudentAtHyx ⇒∧∀∃

