Artificial Intelligence

First-order predicate logic
Chapter 8, AIMA

Why first order logic (FOL)?

- Logic is a language we use to express knowledge in rigorous manner
- consists of syntax and semantics
- Propositional (boolean) logic is too limited for a lot of (even simple) domains
- complex environments cannot be described in a sufficiently natural and concise way
- First order logic (predicate calculus) can express a lot more of common-sense knowledge in a reasonable manner

Limitations of propositional logic

Wumpus in $(3,1) \Rightarrow$ Stench in $(3,2)$

$$
W_{31} \Rightarrow S_{32}
$$

Propositional logic needs to express this for every square in the Wumpus world.

Block B is on top of $C \Rightarrow \neg(C$ is free to be moved)

If we have more blocks, we need a lot of statements like this.

$$
A=\text { John has a bike } \wedge B=\text { John has a car }
$$

Propositional logic cannot express that these two statements are about the same person.

What we want:

"If there is a Wumpus in square x, then there will be a stench in all neighboring squares."

Say it once and for all.
"We cannot move an object if there is something on top of it."

"John has a bike and a car."

"People with mutliple vehicles watch weather forecasts more often."

First-order logic (FOL) Syntax

- Logical symbols (always the same meaning)
- logical connectives: and, or, implication, etc.
- quantifiers: for all (\forall) and there exists (\exists)
- an infinite set of variables: x, y, z, \ldots
- equality symbol and truth constants: =, T, F
- Non-logical symbols (depend on interpretation)
- constants (objects): man, woman, house, car, conflict, slawek, stefan, denni, halmstaduniversity, ...
- predicates (relations between objects): red, green, nice, larger, above, below, schedule, itinerary, ...
- functions: fatherOf, brotherOf, beginningOf, birthday, employer, flightNumber, slideTitle, man, woman, ...

First-order logic (FOL) Syntax

Constants

A, 125, Q, John, KingJohn, TheCrown, EiffelTower, D215, Wumpus, HH, TravelAgent,...
Function constants (of various arities)
FatherOf ${ }^{1}$ (KingJohn), LeftLegOf ${ }^{1}$ (John), NeighborOf ${ }^{1}(\mathrm{HH})$, DistanceBetween²(A,B), Times²$^{2}(2,4)$, Price 2 (Fruit, Weight), Itinerary ${ }^{3}$ (DepartureAirport, ArrivalAirport, DepartureTime), KingJohn ${ }^{0}(), \mathrm{A}^{0}(), 125^{\circ}(), \mathrm{HH}^{0}()$, Agent $^{0}(), \ldots$
Relations/predicates (of various arities)
Unary predicates (properties): Orange ${ }^{1}$, Nice ${ }^{1}$, Rich ${ }^{1}, ~ . .$. N-ary relations: Parent ${ }^{2}$, Brother², Married ${ }^{2}$, Before ${ }^{2}, \ldots$

Function constants LeftLegOf(R)
LeftLegOf(J)

Relations (predicates)
$\left.\begin{array}{l}\operatorname{Person}(\mathrm{R}) \\ \operatorname{Person}(\mathrm{J}) \\ \operatorname{King}(\mathrm{J}) \\ \operatorname{Crown}(\mathrm{C})\end{array}\right\}$ Unary
$\left.\begin{array}{l}\operatorname{Brother}(J, R) \\ \operatorname{Brother}(R, J) \\ \operatorname{OnHead}(C, J)\end{array}\right\}$ Binary

First-order logic (FOL) Syntax Term

1. An object constant is a term
2. A complete function constant is a term (complete $=$ all arguments are provided and each one of them is a term)
3. A variable is a term.

Intuitively, a term corresponds to a well-defined object in the world.

First-order logic (FOL) Syntax

Well-Formed Formula (wff)

1. A complete predicate symbol is a wff (complete $=$ all arguments are provided and each one of them is a term)
2. An equality between two terms is a wff
3. Negation of a wff is a wff
4. Two wffs connected by a connective is a wff
5. Quantifier (\forall or \exists with a variable) followed by a wff is a wff.

Intuitively, a wff is something that could be true or false.

First-order logic (FOL) Syntax

Variables and quantifiers

Variables refer to unspecified objects in the domain. We will denote them by lower case letters (at the end of the alphabet) x, y, z, \ldots

Quantifiers constrain the meaning of a variable in a sentence. There are two quantifiers:
"For all" (\forall) and $\underset{\text { Universal quantifier }}{\text { "There existential quantstifier }}(\exists)$

First-order logic (FOL) Syntax
 Variables in wff

1. Variable is said to be free in a wff if it occurs in this wff and there is no quantifier binding this variable
Brother (x, y) ^ King (x) ^ Mother $(x, y) \Rightarrow$ Woman (x)
2. Variable is said to be bound in a wff if it occurs in this wff and it is not free $\forall_{x} \forall_{y}$ Mother $(x, y) \Rightarrow$ Woman (x) $\nabla_{y} \exists_{x}$ Mother (x, y)

First-order logic (FOL) Syntax

Sentence

A well formed formula without any free variables is called a sentence

- Atomic sentence

A complete predicate symbol (relation)
Brother(RichardTheLionheart,KingJohn), Dead(Mozart), Married(CarlXVIGustaf,Silvia), Orange(Block(C)),...

- Complex sentence

Formed by sentences and connectives
Dead(Mozart) ^ Composer(Mozart),
\neg King(RichardTheLionheart) \Rightarrow King(KingJohn), King(CarIXVIGustaf) \wedge Married(CarlXVIGustaf,Silvia) \Rightarrow
\Rightarrow Queen(Silvia)

First-order logic (FOL) Semantics

Semantics assigns truth values to sentences

- terms and wffs that are not sentences do not, in general, have any truth values
The truth value of atomic sentences comes from the model/interpretation
- just like in propositional logic King(Richard)

The truth value of complex sentences is determined by truth tables

- Quantifiers need to take into account domain of discourse:

$$
\forall_{x} \exists_{y} \quad x=y * y
$$

Example: Block world

First-order logic (FOL) Syntax

Variables and quantifiers (\forall^{\prime} "For all...")

$\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)$	"All kings are person
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$	"All brothers are siblin
$\forall x, y \operatorname{Son}(x, y) \wedge \operatorname{King}(y) \Rightarrow$	"All sons of kings are
Prince (x)	 $\forall x$ AIstudent $(x) \Rightarrow \operatorname{Overworked}(x)$ "All AI students are overworked"

$\forall_{\text {<variables> }}<\mathrm{wff}>$

Everyone at Berkeley is smart:

$$
\forall_{x} \quad \text { At }(x, \text { Berkeley }) \Rightarrow
$$

Smart(x)
$\forall_{\mathrm{x}} \mathrm{P}$ is equivalent to the conjunction of instantiations of P

At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn)
$\wedge \mathrm{At}$ (Richard, Berkeley) \Rightarrow Smart(Richard)
\wedge At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley)
^ ...
Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective:

$$
\begin{aligned}
& \forall \text { At }(x, \text { Berkeley) } \wedge \text { Smart(} x \text {) } \\
& \text { "Everybôdy is at Berkeley and everybody is smart" }
\end{aligned}
$$

First-order logic (FOL) Syntax

Variables and quantifiers (\exists "There exists...")

$\exists x$ King $(x) \wedge$ Person (x)
$\exists x$ Loves(x,KingJohn)
$\exists x \neg \operatorname{Loves}(x$, KingJohn $)$
$\exists x$ AIstudent $(x) \wedge$ Overworked (x)
"There is a king who is a person / There is a person who is a king"
"There is someone who loves King John"
"There is someone who does not love King John"
$\exists x$ AIstudent(x) \wedge Overworked(x)
"There is an AI student that is overworked"

$\exists_{\text {<variables> }}<$ wff>

Someone at Stanford is smart:

$\exists_{x} \quad$ At $(x$, Stanford $) \wedge$ Smart (x)

$\exists_{\mathrm{P}} \mathrm{P}$ is equivalent to the disjunction of instantiations of
At(KingJohn, Stanford) ^ Smart(KingJohn)
\vee At(Richard, Stanford) ^ Smart(Richard)
$\vee \operatorname{At}($ Berkeley, Stanford) \wedge Smart(Berkeley)

Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective:

$$
\exists_{x} \quad \operatorname{At}(x, \operatorname{Stanford}) \Rightarrow \operatorname{Smart}(x)
$$

This is true whenever there is somebody not at Stanford

First-order logic (FOL) Syntax

Nested quantifiers

$\forall x \exists y \operatorname{Loves}(x, y)$
"Everybody loves somebody"
$\exists y \forall x$ Loves(x, y)
$\forall x \exists y \operatorname{Loves}(y, x)$
$\exists y \forall x \operatorname{Loves}(y, x)$
$\forall x \exists y \operatorname{Loves}(x, y) \wedge(y \neq x) \quad$ "Everybody loves somebody else"

First-order logic (FOL) Syntax

Nested quantifiers

$$
\forall x \exists y \operatorname{Loves}(x, y) \neq \exists y \forall x \operatorname{Loves}(x, y)
$$

"Everybody loves somebody" $=$ "Someone is loved by everyone"

$$
\forall x \exists y \operatorname{Loves}(y, x) \neq \exists y \forall x \operatorname{Loves}(y, x)
$$

"Everyone is loved by someone" = "Someone loves everyone"

The order of \forall and \exists matters!

Quantifier duality

DeMorgan's rules

$$
\begin{aligned}
\forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) & \equiv \neg \exists \mathrm{xP}(\mathrm{x}) \\
\neg \forall \mathrm{xP}(\mathrm{x}) & \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\forall \mathrm{xP}(\mathrm{x}) & \equiv \neg \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\exists \mathrm{xP}(\mathrm{x}) & \equiv \neg \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

Ponder these for a while...

Family fun

Family axioms:

"A mother is a female parent" "A husband is a male spouse" "You're either male or female" "A child's parent is the parent of the child" (sic!) "My grandparents are the parents of my parents" "Siblings are two children who share the same parents"
"A first cousin is a child of the siblings of my parents"

© 1998, Jon A. Davis
...etc.

Family theorems:

Sibling is reflexive

Family fun

Family axioms:

$\forall_{m, c}(m=\operatorname{Mother}(c)) \Leftrightarrow($ Female $(m) \wedge \operatorname{Parent}(m, c))$ or $\forall c$ Female(Mother(c)) \wedge Parent(Mother(c), c)
$\forall_{w, h}$ Husband(h,w) $\Leftrightarrow \operatorname{Male}(h) \wedge$ Spouse(h,w)
\forall_{x} Male(x$) \Leftrightarrow \neg$ Female (x)
$\forall_{p, c} \operatorname{Parent}(p, c) \Leftrightarrow \operatorname{Child}(c, p)$
$\forall_{g, c} \operatorname{Grandparent}(\mathrm{~g}, \mathrm{c}) \Leftrightarrow \exists_{\mathrm{p}}$ (Parent(g,p)$\left.\wedge \operatorname{Parent}(\mathrm{p}, \mathrm{c})\right)$
$\forall_{x, y} \operatorname{Sibling}(x, y) \Leftrightarrow\left(\exists_{p}(\operatorname{Parent}(p, x) \wedge \operatorname{Parent}(p, y))\right) \wedge(x \neq y)$
$\forall_{x, y} \operatorname{FirstCousin}(x, y) \Leftrightarrow \exists_{p, s}(\operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p, s) \wedge$ 'Parent($\mathrm{s}, \mathrm{y})$)

© 1998, Jon A. Davis

Family fun

Family axioms:

"A mother is a female parent"
"A husband is a male spouse" "You're either male or female" "A child's parent is the parent of the child" (sic!) "My grandparents are the parents of my parents" "Siblings are two children who share the same parents"
"A first cousin is a child of the siblings of my parents"

© 1998, Jon A. Davis
...etc.

Family theorems:

Sibling is reflexive

Matematical fun

- "The square of every negative integer is positive"
a) $\forall x\left[\operatorname{Integer}(x) \wedge(x>0) \Rightarrow\left(x^{2}>0\right)\right]$
b) $\forall x\left[\operatorname{Integer}(x) \wedge(x<0) \Rightarrow\left(x^{2}>0\right)\right]$
c) $\forall x\left[\operatorname{Integer}(x) \wedge(x \leq 0) \Rightarrow\left(x^{2}>0\right)\right]$
d) $\forall x\left[\operatorname{Integer}(x) \wedge(x<0) \wedge\left(x^{2}>0\right)\right]$
a) "Not every integer is positive"
a) $\forall x[\neg \operatorname{Integer}(x) \Rightarrow(x>0)]$
b) $\forall x[\operatorname{Integer}(x) \Rightarrow(x \leq 0)]$
c) $\forall x[$ Integer $(x) \Rightarrow \neg(x>0)]$
d) $\neg \forall x[\operatorname{Integer}(x) \Rightarrow(x>0)]$

Matematical fun

- "The square of every negative integer is positive"
a) $\forall x\left[\operatorname{Integer}(x) \wedge(x>0) \Rightarrow\left(x^{2}>0\right)\right]$
b) $\forall x\left[\operatorname{Integer}(x) \wedge(x<0) \Rightarrow\left(x^{2}>0\right)\right]$
c) $\forall x\left[\operatorname{Integer}(x) \wedge(x \leq 0) \Rightarrow\left(x^{2}>0\right)\right]$
d) $\forall x\left[\operatorname{Integer}(x) \wedge(x<0) \wedge\left(x^{2}>0\right)\right]$
a) "Not every integer is positive"
a) $\forall x[\neg \operatorname{Integer}(x) \Rightarrow(x>0)]$
b) $\forall x[\operatorname{Integer}(x) \Rightarrow(x \leq 0)]$
c) $\forall x[$ Integer $(x) \Rightarrow \neg(x>0)]$
d) $\neg \forall x[\operatorname{Integer}(x) \Rightarrow(x>0)]$

The Wumpus world revisited

Object constants:
Square s = $\mathrm{x}, \mathrm{y}]$, Agent, Time (t),
Percept $\mathbf{p}=\left[p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right]$, Gold
Predicates:
Pit(s), Breezy(s), EvilSmelling(s), Wumpus(s), Safe(s), Breeze(p,t), Stench(p,t), Glitter(p,t), Wall(p,t), Scream (p,t), Adjacent(s,r), At(Agent,s,t), Hold(Gold,t)

(There are other possible representations)

```
\forallx,y,z,w Adjacent([x,y],[z,w])\Leftrightarrow([z,w]\in{[x+1,y],[x-1,y],[x,y+1],[x,y-1]})
\foralls Breezy(s) \Leftrightarrow\exists\mathbf{r}(\operatorname{Adjacent(r,s)}\wedge Pit(r))
\foralls EvilSmelling(s) \Leftrightarrow\exists\mathbf{r}}\mathrm{ (Adjacent(r,s) ^ Wumpus(r))
\foralls(\negEvilSmelling(s)}\wedge\neg\mathrm{ Breezy(s)) }\Leftrightarrow\forall\mathbf{r}(\operatorname{Adjacent(r,s) ^ Safe(r))
|s,t (At(Agent,s,t) ^ Breeze(p,t)) = Breezy(s)
|s,t (At(Agent,s,t) ^ Stench(p,t)) = EvilSmelling(s)
```


Puzzles with nested quantifiers

- Are both these statements true?

$$
\begin{aligned}
& \forall x \exists y \quad x^{2}<y \\
& \exists y \forall x \quad x^{2}<y \quad \text { TRUE } \\
& \exists y \text { FALSE }
\end{aligned}
$$

Puzzles with nested quantifiers

- Are both these statements true?

$$
\begin{aligned}
& \forall x \exists y \quad x+y=0 \\
& \exists y \forall x \quad x+y=0
\end{aligned}
$$

TRUE

FALSE

Translations...

Translate the following sentences to a first order logic expression

1. The product of two negative integers is positive
2. The difference of two negative integers is not necessarily negative

Translations...

Translate the following sentences to a first order logic expression

1. The product of two negative integers is positive

$$
\forall x \forall y(x<0) \wedge(y<0) \wedge \operatorname{Integer}(x) \wedge \operatorname{Integer}(y) \Rightarrow x \cdot y>0
$$

2. The difference of two negative integers is not necessarily negative

Translations...

Translate the following sentences to a first order logic expression

1. The product of two negative integers is positive

$$
\forall x \forall y(x<0) \wedge(y<0) \wedge \operatorname{Integer}(x) \wedge \operatorname{Integer}(y) \Rightarrow x \cdot y>0
$$

2. The difference of two negative integers is not necessarily negative
$\exists x \exists y(x<0) \wedge(y<0) \wedge \operatorname{Integer}(x) \wedge \operatorname{Integer}(y) \wedge(x-y>0)$

Translations...

Translate the following sentences to a first order logic expression

1. The product of two negative integers is positive

Why not \wedge ?
$\forall x \forall y(x<0) \wedge(y<0) \wedge \operatorname{Integer}(x) \wedge \operatorname{Integer}(y) \Rightarrow x \cdot y>0$
2. The difference of two negative integers is not necessarily negative

Why not \Rightarrow ?
$\exists x \exists y(x<0) \wedge(y<0) \wedge \operatorname{Integer}(x) \wedge \operatorname{Integer}(y) \wedge(x-y>0)$

Translations...

Translate the following sentences to a first order logic expression

1. The product of two negative integers is positive can we write $\forall y \forall x$?

Why not \wedge ?
$\forall x \forall y(x<0) \wedge(y<0) \wedge \operatorname{Integer}(x) \wedge \operatorname{Integer}(y) \Rightarrow x \cdot y>0$
2. The difference of two negative integers is not necessarily negative

Why not \Rightarrow ?
$\exists x \exists y(x<0) \wedge(y<0) \wedge \operatorname{Integer}(x) \wedge \operatorname{Integer}(y) \wedge(x-y>0)$ Can we write $\exists y \exists x$?

Translations...

Translate the following sentences to a first order logic expression

1. There is a student at HH who has taken every mathematics course offered at HH.
2. Every salesman has at least one apple

Translations...

Translate the following sentences to a first order logic expression

1. There is a student at HH who has taken every mathematics course offered at HH .
$\exists x \operatorname{StudentAtHH}(x) \wedge \forall y[\operatorname{MathematicsCourseAtHH}(y) \Rightarrow \operatorname{Taken}(x, y)]$
2. Every salesman has at least one apple

Translations...

Translate the following sentences to a first order logic expression

1. There is a student at HH who has taken every mathematics course offered at HH.
$\exists x \forall y$ StudentAtHH $(x) \wedge[$ MathematicsCourseAtHH $(y) \Rightarrow$ Taken $(x, y)]$
2. Every salesman has at least one apple

Translations...

Translate the following sentences to a first order logic expression

1. There is a student at HH who has taken every mathematics course offered at HH.
$\exists x \forall y \operatorname{StudentAtHH}(x) \wedge[$ MathematicsCourseAtHH $(y) \Rightarrow \operatorname{Taken}(x, y)]$
2. Every salesman has at least one apple

$$
\forall x \operatorname{Salesman}(x) \Rightarrow \exists y \operatorname{Has}(x, y) \wedge \operatorname{Apple}(y)
$$

Translations...

Translate the following sentences to a first order logic expression

1. There is a student at HH who has taken every mathematics course offered at HH.
$\exists x \forall y \operatorname{StudentAtHH}(x) \wedge[$ MathematicsCourseAtHH $(y) \Rightarrow \operatorname{Taken}(x, y)]$
2. Every salesman has at least one apple

$$
\forall x \exists y \operatorname{Salesman}(x) \Rightarrow \operatorname{Has}(x, y) \wedge \operatorname{Apple}(y)
$$

Translations...

Translate the following sentences to a first order logic expression

1. There is a student at HH who has taken every mathematics course offered at HH.
$\exists x \forall y$ StudentAtHH $(x) \wedge[$ MathematicsCourseAtHH $(y) \Rightarrow$ Taken $(x, y)]$
2. Every salesman has at least one apple

$$
\exists y \forall x \text { Salesma }
$$

Translations...

Translate the following sentences to a first order logic expression

1. There is a student at HH who has taken every mathematics course offered at HH.
$\exists x \forall y$ StudentAtHH $(x) \wedge[$ MathematicsCourseAtHH $(y) \Rightarrow$ Taken $(x, y)]$
2. Every salesman has at least one apple
$\forall x \exists y$ Salesm \rightarrow Apple $(y))$
