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First-order predicate logic 
Chapter 8, AIMA 



Why first order logic (FOL)? 

•  First order logic (predicate calculus) 
can express a lot more of common-sense 
knowledge in a reasonable manner 

•  Propositional (boolean) logic is too 
limited for a lot of (even simple) domains 
–  complex environments cannot be described in 

a sufficiently natural and concise way 

•  Logic is a language we use to express 
knowledge in rigorous manner 
–  consists of syntax and semantics 



Limitations of propositional logic 
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Wumpus in (3,1) ⇒ Stench in (3,2) 
W31⇒ S32 

 
 

Propositional logic needs to express this 
for every square in the Wumpus world. 

A = John has a bike ∧ B = John has a car 
 

Propositional logic cannot express that these two 
statements are about the same person. 

Block B is on top of C ⇒ ¬(C is free to be moved) 
 
If we have more blocks, we need a lot of statements like this. 



What we want: 
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”If there is a Wumpus in square x, then there 
will be a stench in all neighboring squares.” 
 

Say it once and for all. 

”We cannot move an object if 
there is something on top of it.” 

 
”John has a bike and a car.” 
 
... 
 
”People with mutliple vehicles watch 
weather forecasts more often.” 



•  Non-logical symbols (depend on interpretation) 
–  constants (objects): man, woman, house, car, 

conflict, slawek, stefan, denni, halmstaduniversity, ... 

– predicates (relations between objects): red, 
green, nice, larger, above, below, schedule, itinerary, ... 

–  functions: fatherOf, brotherOf, beginningOf, birthday, 
employer, flightNumber, slideTitle, man, woman, … 

constants are actually a special case of functions 

•  Logical symbols (always the same meaning) 
–  logical connectives: and, or, implication, etc. 
– quantifiers: for all (∀) and there exists (∃) 
– an infinite set of variables: x, y, z, … 
– equality symbol and truth constants: =, T, F 

First-order logic (FOL) 
Syntax 



 
Constants 

A, 125, Q, John, KingJohn, TheCrown, EiffelTower, D215, 
Wumpus, HH, TravelAgent,... 

Function constants (of various arities) 
FatherOf1(KingJohn), LeftLegOf1(John), NeighborOf1(HH), 

    DistanceBetween2(A,B), Times2(2,4), Price2(Fruit,Weight), 
    Itinerary3(DepartureAirport, ArrivalAirport, DepartureTime), 
    KingJohn0(), A0(), 1250(), HH0(), Agent0(), ... 

Relations/predicates (of various arities) 
Unary predicates (properties): Orange1, Nice1, Rich1, ... 

    N-ary relations: Parent2, Brother2, Married2, Before2, ... 
 

First-order logic (FOL) 
Syntax 

The superscript denotes the ”arity” = the number of arguments 



R = RichardTheLionheart 
J = KingJohn 
C = Crown 

Function constants 
LeftLegOf(R) 
LeftLegOf(J) 
 
Relations (predicates) 
Person(R) 
Person(J) 
King(J) 
Crown(C) 
 
Brother(J,R) 
Brother(R,J) 
OnHead(C,J) 

Object constants 

Unary 

Binary 



Term 
 

1.  An object constant is a term 
2.  A complete function constant is a term 

(complete = all arguments are provided 
and each one of them is a term) 

3.  A variable is a term. 
 

Intuitively, a term corresponds to a 
well-defined object in the world. 

First-order logic (FOL) 
Syntax 



Well-Formed Formula (wff) 
 

1.  A complete predicate symbol is a wff 
(complete = all arguments are provided and 
each one of them is a term) 

2.  An equality between two terms is a wff 
3.  Negation of a wff is a wff 
4.  Two wffs connected by a connective is a wff 
5.  Quantifier (∀ or ∃ with a variable) followed 

by a wff is a wff. 
 

First-order logic (FOL) 
Syntax 

Intuitively, a wff is something that 
could be true or false. 



First-order logic (FOL) 
Syntax 

Variables and quantifiers 
 

Variables refer to unspecified objects in the 
domain. We will denote them by lower 
case letters (at the end of the alphabet) 
x, y, z, ... 
 

Quantifiers constrain the meaning of a 
variable in a sentence. There are two 
quantifiers: 

 

”For all” (∀)    and   ”There exists” (∃) 
Universal quantifier Existential quantifier 



Variables in wff 
 

1.  Variable is said to be free in a wff if it 
occurs in this wff and there is no quantifier 
binding this variable  
Brother(x,y) ∧ King(x) ∧ Mother(x,y) ⇒ Woman(x) 
 

2.  Variable is said to be bound in a wff if it 
occurs in this wff and it is not free 
∀x∀y Mother(x,y) ⇒ Woman(x) 
∀y∃x Mother(x,y) 

First-order logic (FOL) 
Syntax 



First-order logic (FOL) 
Syntax 

Sentence 
 

A well formed formula without any free 
variables is called a sentence 
– Atomic sentence 

A complete predicate symbol (relation) 
Brother(RichardTheLionheart,KingJohn), Dead(Mozart), 
Married(CarlXVIGustaf,Silvia), Orange(Block(C)),... 

– Complex sentence 
Formed by sentences and connectives 
Dead(Mozart) ∧ Composer(Mozart), 
¬King(RichardTheLionheart) ⇒ King(KingJohn), 
King(CarlXVIGustaf) ∧ Married(CarlXVIGustaf,Silvia) ⇒ 

⇒ Queen(Silvia)  



First-order logic (FOL) 
Semantics 

 

Semantics assigns truth values to sentences 
–  terms and wffs that are not sentences do not, 
in general, have any truth values     

The truth value of atomic sentences comes 
 from the model/interpretation 

–  just like in propositional logic    
The truth value of complex sentences is 

 determined by truth tables 
– Quantifiers need to take into account 
domain of discourse:        ∀X∃Y    X = Y * Y 

King(X) 

King(Richard) 



Example: Block world 
On(A,B) True 
On(B,C) True 
On(B,A) False 
On(C,B) False 
On(C,A) False 
On(A,C) False 
Clear(A) True 
Clear(B) False 
Clear(C) False 
Under(B,A) True 
Under(C,B) True 
Under(A,B) False 
Under(C,A) False 
Under(B,A) ∧ Over(B,C) True 
Under(C,B) ∨ Under(C,A) True 

C 
B 

A 



First-order logic (FOL) 
Syntax 

Variables and quantifiers 
(∀ ”For all...”) 

∀x King(x) ⇒ Person(x) ”All kings are persons” 

∀x,y Brother(x,y) ⇒ Sibling(x,y) ”All brothers are siblings” 

∀x,y Son(x,y) ∧ King(y) ⇒ 
Prince(x) 

”All sons of kings are princes” 

∀x AIstudent(x) ⇒ Overworked(x) ”All AI students are 
overworked” 



Slide from S. Russel @ Berkeley 

∀<variables> <wff> 
 

Everyone at Berkeley is smart: 

∀x    At(x, Berkeley)  ⇒  
Smart(x) 

„Everybody is at Berkeley and everybody is smart” 

∀xP is equivalent to the conjunction of instantiations of 
P 
 

       At(KingJohn, Berkeley) ⇒  Smart(KingJohn) 
  ∧   At(Richard, Berkeley) ⇒  Smart(Richard) 
  ∧   At(Berkeley, Berkeley) ⇒  Smart(Berkeley) 
  ∧   … 
 
Typically,  ⇒  is the main connective with ∀ 

Common mistake: using ∧ as the main 
connective: 
 

∀x    At(x, Berkeley)  ∧  Smart(x) 



First-order logic (FOL) 
Syntax 

Variables and quantifiers 
(∃ ”There exists...”) 

∃x King(x) ∧ Person(x) ”There is a king who is a 
person / There is a person 
who is a king” 

∃x Loves(x,KingJohn) ”There is someone who loves 
King John” 

∃x ¬Loves(x,KingJohn) ”There is someone who does 
not love King John” 

∃x AIstudent(x) ∧ Overworked(x) ”There is an AI student that is 
overworked” 



Slide from S. Russel @ Berkeley 

∃<variables> <wff> 
 

Someone at Stanford is smart: 

∃x    At(x, Stanford)  ∧  Smart(x) 

This is true whenever there is somebody not at Stanford 

Common mistake: using ⇒ as the main 
connective: 
 

∃x    At(x, Stanford)  ⇒  Smart(x) 

∃xP is equivalent to the disjunction of instantiations of 
P 
 

       At(KingJohn, Stanford) ∧  Smart(KingJohn) 
  ∨   At(Richard, Stanford) ∧  Smart(Richard) 
  ∨   At(Berkeley, Stanford) ∧  Smart(Berkeley) 
  ∨   … 
 
Typically,  ∧  is the main connective with ∃ 
 



First-order logic (FOL) 
Syntax 

Nested quantifiers 

∀x ∃y Loves(x,y) ”Everybody loves somebody” 

∃y ∀x Loves(x,y) ”Someone is loved by everyone” 

∀x ∃y Loves(y,x) ”Everyone is loved by someone” 

∃y ∀x Loves(y,x) ”Someone loves everyone” 

∀x ∃y Loves(x,y) ∧ (y ≠ x) ”Everybody loves somebody else” 



First-order logic (FOL) 
Syntax 

Nested quantifiers 

∀x ∃y Loves(x,y) ≠ ∃y ∀x Loves(x,y) 

”Everybody loves somebody” ≠ ”Someone is loved by everyone” 

∀x ∃y Loves(y,x) ≠ ∃y ∀x Loves(y,x) 

”Everyone is loved by someone” ≠ ”Someone loves everyone” 
 

The order of ∀ and ∃ matters! 



Quantifier duality 

DeMorgan’s rules 

∀x ¬P(x) ≡ ¬∃x P(x) 
¬∀x P(x) ≡ ∃x ¬P(x) 
∀x P(x) ≡ ¬∃x ¬P(x) 
∃x P(x) ≡ ¬∀x ¬P(x) 

Ponder these for a while... 



Family fun 
Family axioms: 
”A mother is a female parent” 
”A husband is a male spouse” 
”You’re either male or female” 
”A child’s parent is the parent of the child” (sic!) 
”My grandparents are the parents of my parents” 
”Siblings are two children who share the same parents” 

 
”A first cousin is a child of the siblings of my parents” 

 
 
...etc. 
 
Family theorems: 
Sibling is reflexive 
 

© 1998, Jon A. Davis  

Write these in FOL 



Family fun 
Family axioms: 
∀m,c (m = Mother(c)) ⇔ (Female(m) ∧ Parent(m,c)) 
       or   ∀c Female(Mother(c)) ∧ Parent(Mother(c),c) 
∀w,h   Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w) 
∀x Male(x) ⇔ ¬Female(x) 
∀p,c Parent(p,c) ⇔ Child(c,p) 
∀g,c Grandparent(g,c) ⇔ ∃p (Parent(g,p) ∧ Parent(p,c)) 
∀x,y Sibling(x,y)⇔(∃p (Parent(p,x)∧Parent(p,y)))∧(x ≠ y) 
∀x,y FirstCousin(x,y) ⇔ ∃p,s (Parent(p,x) ∧ Sibling(p,s) ∧ 

Parent(s,y)) 
 
Family theorems: 
∀x,y Sibling(x,y) ⇔ Sibling(y,x) 
 

© 1998, Jon A. Davis  

Spouse(Gomez,Morticia) 
Parent(Morticia,Wednesday) 
Sibling(Pugsley,Wednesday) 
Sister(Ophelia,Morticia) 
FirstCousin(Gomez,Itt) 
∃p (Parent(p,Morticia) ∧ Sibling(p,Fester)) 



Family fun 
Family axioms: 
”A mother is a female parent” 
”A husband is a male spouse” 
”You’re either male or female” 
”A child’s parent is the parent of the child” (sic!) 
”My grandparents are the parents of my parents” 
”Siblings are two children who share the same parents” 

 
”A first cousin is a child of the siblings of my parents” 

 
 
...etc. 
 
Family theorems: 
Sibling is reflexive 
 

© 1998, Jon A. Davis  



Matematical fun 

•  ”The square of every negative integer is 
positive” 
a)  ∀x [Integer(x) ∧ (x > 0) ⇒ (x2 > 0)] 
b)  ∀x [Integer(x) ∧ (x < 0) ⇒ (x2 > 0)] 
c)  ∀x [Integer(x) ∧ (x ≤ 0) ⇒ (x2 > 0)] 
d)  ∀x [Integer(x) ∧ (x < 0) ∧ (x2 > 0)] 
 

a)  ”Not every integer is positive” 
a)  ∀x [¬Integer(x) ⇒ (x > 0)] 
b)  ∀x [Integer(x) ⇒ (x ≤ 0)] 
c)  ∀x [Integer(x) ⇒ ¬(x > 0)] 
d)  ¬∀x [Integer(x) ⇒ (x > 0)] 

Borrowed from http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/logic/logic7.html 



Matematical fun 

•  ”The square of every negative integer is 
positive” 
a)  ∀x [Integer(x) ∧ (x > 0) ⇒ (x2 > 0)] 
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c)  ∀x [Integer(x) ∧ (x ≤ 0) ⇒ (x2 > 0)] 
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a)  ”Not every integer is positive” 
a)  ∀x [¬Integer(x) ⇒ (x > 0)] 
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The Wumpus world revisited 
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∀ x,y,z,w Adjacent([x,y],[z,w]) ⇔ ([z,w] ∈ {[x+1,y],[x-1,y],[x,y+1],[x,y-1]}) 
∀s Breezy(s) ⇔ ∃r (Adjacent(r,s) ∧ Pit(r)) 
∀s EvilSmelling(s) ⇔ ∃r (Adjacent(r,s) ∧ Wumpus(r)) 
∀s (¬EvilSmelling(s) ∧ ¬Breezy(s)) ⇔ ∀r (Adjacent(r,s) ∧ Safe(r)) 

∀s,t (At(Agent,s,t) ∧ Breeze(p,t)) ⇒ Breezy(s) 
∀s,t (At(Agent,s,t) ∧ Stench(p,t)) ⇒ EvilSmelling(s) 

Object constants:  
   Square s = [x,y], Agent, Time (t), 
   Percept p = [p1,p2,p3,p4,p5], Gold  
Predicates: 
   Pit(s), Breezy(s), EvilSmelling(s), 
   Wumpus(s), Safe(s), Breeze(p,t),  
   Stench(p,t), Glitter(p,t), Wall(p,t), 
   Scream(p,t), Adjacent(s,r),  
   At(Agent,s,t), Hold(Gold,t) 

(There are other possible representations) 

Compare to the 275 rules in boolean KB! 



Puzzles with nested quantifiers 

•  Are both these statements true? 

yxxy
yxyx

<∀∃

<∃∀
2

2

  
  TRUE 

FALSE 



Puzzles with nested quantifiers 

•  Are both these statements true? 

0  
0  

=+∀∃

=+∃∀

yxxy
yxyx TRUE 

FALSE 



Translations... 

Translate the following sentences to a first 
order logic expression 

 
1.  The product of two negative integers is 

positive 
 
 
2.  The difference of two negative integers is 

not necessarily negative 
 

Examples borrowed from Aaron Blomfield @ University of Virginia & Kenneth Rosen, Discrete Math and Its Applications, 5th edition. McGraw Hill, 2003 
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order logic expression 

 
1.  The product of two negative integers is 

positive 
 
 
2.  The difference of two negative integers is 

not necessarily negative 
 

Examples borrowed from Aaron Blomfield @ University of Virginia & Kenneth Rosen, Discrete Math and Its Applications, 5th edition. McGraw Hill, 2003 

0)()()0()0(  >⋅⇒∧∧<∧<∀∀ yxyIntegerxIntegeryxyx

)0()()()0()0(  >−∧∧∧<∧<∃∃ yxyIntegerxIntegeryxyx



Translations... 

Translate the following sentences to a first 
order logic expression 

 
1.  The product of two negative integers is 
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Why not ∧ ? 

Why not ⇒ ? 



Translations... 

Translate the following sentences to a first 
order logic expression 

 
1.  The product of two negative integers is 

positive 
 
 
2.  The difference of two negative integers is 

not necessarily negative 
 

Examples borrowed from Aaron Blomfield @ University of Virginia & Kenneth Rosen, Discrete Math and Its Applications, 5th edition. McGraw Hill, 2003 

0)()()0()0(  >⋅⇒∧∧<∧<∀∀ yxyIntegerxIntegeryxyx
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Why not ∧ ? 

Why not ⇒ ? 

Can we write ∀y∀x ? 

Can we write ∃y∃x ? 



Translations... 

Translate the following sentences to a first 
order logic expression 

 
1.  There is a student at HH who has taken 

every mathematics course offered at HH. 
 
 
2.  Every salesman has at least one apple 
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Translations... 

Translate the following sentences to a first 
order logic expression 
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Translations... 

Translate the following sentences to a first 
order logic expression 

 
1.  There is a student at HH who has taken 

every mathematics course offered at HH. 
 
 
2.  Every salesman has at least one apple 
 

)(),()(  yAppleyxHasxSalesmanyx ∧⇒∃∀

[ ]),()( )(  yxTakenyHsCourseAtHMathematicxHStudentAtHyx ⇒∧∀∃



∃ y∀ x   Salesman ( x )⇒ Has( x , y )∧ Apple ( y )

Translations... 

Translate the following sentences to a first 
order logic expression 
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Translations... 

Translate the following sentences to a first 
order logic expression 

 
1.  There is a student at HH who has taken 

every mathematics course offered at HH. 
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