
Artificial Intelligence

Logical agents

Chapter 7, AIMA

This presentation owes some to V. Pavlovic @ Rutgers and D. Byron @ OSU

Motivation for
Knowledge Representation

• Search algorithms discussed previously are often

called meta-programming

– they are general, but it still is programming

– the code needs to be specialised for every concrete

application taking domain knowledge into account

• We need something more general

– letting us to only specify the rules of the game

– and use „out-of-the-box” reasoning engine

1 2 3 4

1

2

3

4

The Wumpus World

1 2 3 4

1

2

3

4

The Wumpus World

Start position = (1,1)
Always safe

1 2 3 4

1

2

3

4

The Wumpus World

Goal: Get the gold

1 2 3 4

1

2

3

4

The Wumpus World

Problem 1: Big, hairy, smelly, dangerous Wumpus.
Will eat you if you run into it, but you can smell it
a block away.

The environment
is static: the

Wumpus doesn’t
move around

1 2 3 4

1

2

3

4

The Wumpus World

Problem 2: Big, bottomless pits where you fall down.
You can feel the breeze when you are near them.

1 2 3 4

1

2

3

4

The Wumpus World

PEAS description

Performance measure:
+1000 for gold
-1000 for being eaten or falling down pit
-1 for each action
-10 for using the arrow

Environment:
44 grid of ”rooms”, each ”room” can be
empty, with gold, occupied by Wumpus,
or with a pit.

Acuators:
Move forward, turn left 90, turn right 90
Grab, shoot

Sensors:
Olfactory – stench from Wumpus
Touch – breeze (pits) & hardness (wall)
Vision – see gold
Auditory – hear Wumpus scream when
killed

file:///E:/_halmstad/teaching-AI/lectures/mine/PlugInMaterial/WhatIsWumpus.ppt

1 2 3 4

1

2

3

4

The Wumpus World

PEAS description

Performance measure:
+1000 for gold
-1000 for being eaten or falling down pit
-1 for each action
-10 for using the arrow

Environment:
44 grid of ”rooms”, each ”room” can be
empty, with gold, occupied by Wumpus,
or with a pit.

Acuators:
Move forward, turn left 90, turn right 90
Grab, shoot

Sensors:
Olfactory – stench from Wumpus
Touch – breeze (pits) & hardness (wall)
Vision – see gold
Auditory – hear Wumpus scream when
killed

file:///E:/_halmstad/teaching-AI/lectures/mine/PlugInMaterial/WhatIsWumpus.ppt

1 2 3 4

1

2

3

4

The Wumpus World

PEAS description

Performance measure:
+1000 for gold
-1000 for being eaten or falling down pit
-1 for each action
-10 for using the arrow

Environment:
44 grid of ”rooms”, each ”room” can be
empty, with gold, occupied by Wumpus,
or with a pit.

Acuators:
Move forward, turn left 90, turn right 90
Grab, shoot

Sensors:
Olfactory – stench from Wumpus
Touch – breeze (pits) & hardness (wall)
Vision – see gold
Auditory – hear Wumpus scream when
killed

}1,0{ ,

5

4

3

2

1

















































 i

shoot

grab

right turn

left turn

forward













α

file:///E:/_halmstad/teaching-AI/lectures/mine/PlugInMaterial/WhatIsWumpus.ppt

1 2 3 4

1

2

3

4

The Wumpus World

PEAS description

Performance measure:
+1000 for gold
-1000 for being eaten or falling down pit
-1 for each action
-10 for using the arrow

Environment:
44 grid of ”rooms”, each ”room” can be
empty, with gold, occupied by Wumpus,
or with a pit.

Actuators:
Move forward, turn left 90, turn right 90
Grab, shoot

Sensors:
Olfactory – stench from Wumpus
Touch – breeze (pits) & hardness (wall)
Vision – see gold
Auditory – hear Wumpus scream when
killed

}1,0{ ,

5

4

3

2

1

















































 ix

scream

glitter

wall

breeze

stench

x

x

x

x

x

x

file:///E:/_halmstad/teaching-AI/lectures/mine/PlugInMaterial/WhatIsWumpus.ppt

Exploring the Wumpus world

A

OK

OK

OK

Slide adapted from V. Pavlovic

Agent senses nothing
(no breeze, no smell,..)

























0

0

0

0

0

1,1x

Exploring the Wumpus world

B

A

OK

OK

OK

P?

P?
Agent feels a breeze

Slide adapted from V. Pavlovic

A

























0

0

0

1

0

2,1x

Exploring the Wumpus world

BOK

OK

OK

P?

P?

Agent feels a foul smell

Slide adapted from V. Pavlovic

A

S

W?

W?

























0

0

0

0

1

1,2x

Exploring the Wumpus world

BOK

OK

OK

P?

P?

.. because there
was no smell here...

Slide adapted from V. Pavlovic

A

S

...since there was
no breeze here...

OK

And therefore
pit has to be
here...

Wumpus has to
be here...

Pit can’t be here

...since it cannot
be here...

W?

W?

Exploring the Wumpus world

BOK

OK

OK

P?

P

Slide adapted from V. Pavlovic

S

W

W?

A

OK

A

Agent senses nothing
(no breeze, no smell,..)

OK

OK

P

W

























0

0

0

0

0

2,2x

Exploring the Wumpus world

BOK

OK

OK

P?

P

Slide adapted from V. Pavlovic

S

W

W?OK

A

Agent senses breeze,
smell, and sees gold!

OK

OK

A

BSG

























0

1

0

1

1

x

Exploring the Wumpus world

BOK

OK

OK

P?

P

Slide adapted from V. Pavlovic

S

W

W?OK

Grab the gold and
get out!

OK

OK

A

BSG

A

Exploring the Wumpus world

BOK

OK

OK

P?

P?

.. because there
was no smell here...

Slide adapted from V. Pavlovic

A

S

...since there was
no breeze here...

OK

And therefore
pit has to be
here...

Wumpus has to
be here...

Pit can’t be here

...since it cannot
be here...

W?

W?

How do we automate this kind of reasoning?
How can we make computers figure it out on their own?

Logic

A logic has
– Syntax that specifies symbols in the language and how they can be

combined to form sentences

– Semantics that specifies what facts in the world these sentences refer to
and assigns truth values to them based on their meaning in the world.

– Inference procedure, a mechanical method for computing (deriving)
new (true) sentences from existing (known) sentences.

Logic is a formal language for representing information

in such a way that conclusions can be drawn

Entailment

The sentence A entails the sentence B

• If A is true, then B must also be true

• B is a ”logical consequence” of A

Let’s explore this concept a bit...

A ⊨ B

Example: Wumpus entailment

Agent’s knowledge base (KB) after
having visited (1,1) and (1,2):

1) The rules of the game (PEAS)

2) Nothing in (1,1)

3) Breeze in (1,2)

Which models (states of the world)
match these observations?

1 2 3 4

1

2

3

4

















































0

0

0

1

0

0

0

0

0

0

2,11,1 xx

Every possible world state is a model
but not all are consistent with what we

already know!

Example: Wumpus entailment

We only care about neighboring
rooms, i.e. {(2,1),(2,2),(1,3)}.
We can’t know anything about
the other rooms.

We care about pits, because we
have detected a breeze. We
don’t want to fall down a pit.

There are 23=8 possible
arrangements of {pit, no pit} in
the three neighboring rooms.

1 2 3 4

1

2

3

4

Possible conclusions:
1 : There is no pit in (2,1)
2 : There is no pit in (2,2)
3 : There is no pit in (1,3)

The eight possible situations...

The eight possible situations...

These are the ones
that agree with our
Knowledge Base (KB),
i.e. the rules of the game
and our observations.

...let’s explore this conclusion

1 : There is no pit in (2,1)

These are the
situations
where 1 is true.

...let’s explore this conclusion

1 : There is no pit in (2,1)

KB = The set of models that agrees with the knowledge base
(the observed facts) [The KB is true in these models]

1 = The set of models that agrees with conclusion 1

[conclusion 1 is true in these models]

If KB is true, then
1 is also true.
KB entails 1.

KB ⊨ 1

1 : There is no pit in (2,1)

KB ⊭ 2

Even if KB is true,
2 can be false.
KB does not entail 2

KB = The set of models that agrees with the knowledge base
(the observed facts) [The KB is true in these models]

2 = The set of models that agrees with conclusion 2

[conclusion 2 is true in these models]

...let’s try exploring this conclusion instead...

2 : There is no pit in (2,2)

?

3 : There is no pit in (1,3)

3

KB = The set of models that agrees with the knowledge base
(the observed facts) [The KB is true in these models]

3 = The set of models that agrees with conclusion 3

[conclusion 3 is true in these models]

3 : There is no pit in (1,3)

KB ⊭ 3

3

KB = The set of models that agrees with the knowledge base
(the observed facts) [The KB is true in these models]

3 = The set of models that agrees with conclusion 3

[conclusion 3 is true in these models]

Inference engine

• We need an algorithm that produces the

entailed conclusions automatically

– for any user-defined Knowledge Base

• Entailment is the most important and most

commonly used property in logic

– most of the things we are interested in can be

expressed using entailment

• We will call such an algorithm, as well as it's

implementation, an inference engine

Inference engine

”A is derived from KB by inference engine i”

• Truth-preserving: i only derives entailed sentences

• Complete: i derives all entailed sentences

KB ⊢i A

We want inference engines that are both truth-preserving and complete

Atomic sentence = a single propositional symbol
e.g. P, Q, P13, W31, G32, T, F

Complex sentence = combinations of simpler
sentences, formed using connectives
¬ (not) negation

∧ (and) conjunction
∨ (or) disjunction
⇒ (implies) implication
⇔ (iff = if and only if) biconditional/logical equality

Propositional (boolean) logic
Syntax

Wumpus in room (3,1)

Pit in room (1,3)

P13 ∧ W31

W31 ∨ ¬W31

Precedence: ¬,∧,∨,⇒,⇔

W31 ⇒ S32

Semantics: The rules for whether any given
sentence is true or false

• T (true) is true in every model

• F (false) is false in every model

• The truth values for other propositional
symbols are specified in the model

• Truth values for complex sentences are specified
according to the definitions of connectives

– using a truth table

Propositional (boolean) logic
Semantics

Atomic
sentences

Boolean truth table

P Q ¬P P∧Q P∨Q P⇒Q P⇔Q

False False

False True

True False

True True

Please complete this table...

Boolean truth table

Not P is the opposite of P

P Q ¬P P∧Q P∨Q P⇒Q P⇔Q

False False True

False True True

True False False

True True False

Boolean truth table

P Q ¬P P∧Q P∨Q P⇒Q P⇔Q

False False True False

False True True False

True False False False

True True False True

P ∧ Q is true only when both P and Q are true

Boolean truth table

P ∨ Q is true when either P or Q is true

P Q ¬P P∧Q P∨Q P⇒Q P⇔Q

False False True False False

False True True False True

True False False False True

True True False True True

Boolean truth table

P Q ¬P P∧Q P∨Q P⇒Q P⇔Q

False False True False False True

False True True False True True

True False False False True False

True True False True True True

P ⇒ Q : If P is true then we claim that

Q is true, otherwise we make no claim

Boolean truth table

P Q ¬P P∧Q P∨Q P⇒Q P⇔Q

False False True False False True True

False True True False True True False

True False False False True False False

True True False True True True True

P ⇔ Q is true when the truth

values for P and Q are identical

Boolean truth table

P Q P⊕Q

False False

False True

True False

True True

The exlusive or (XOR) is different
from the OR

Boolean truth table

P Q P⊕Q

False False False

False True True

True False True

True True False

The exlusive or (XOR) is different
from the OR

Example: Wumpus KB

Knowledge base

1 2 3 4

1

2

3

4

1. Nothing in (1,1)
2. Breeze in (1,2)

R1: ¬P11

R2: ¬B11

R3: ¬W11

R4: ¬S11

R5: ¬G11

R6: B12

R7: ¬P12

R8: ¬S12

R9: ¬W12

R10: ¬G12

KB = R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5 ∧ R6 ∧ R7 ∧ R8 ∧ R9 ∧ R10

Interesting sentences [tell us what is in neighbour squares]

Plus the rules
of the game

Example: Wumpus KB

Knowledge base

1 2 3 4

1

2

3

4

1. Nothing in (1,1)
2. Breeze in (1,2)

KB = R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5 ∧ R6 ∧ R7 ∧ R8 ∧ R9 ∧ R10

R1: ¬P11

R2: ¬B11 ⇔ ¬(P21 ∨ P12)

R3: ¬W11

R4: ¬S11 ⇔ ¬(W21 ∨ W12)

R5: ¬G11

R6: B12 ⇔ (P11 ∨ P22 ∨ P13)

R7: ¬P12

R8: ¬S12 ⇔ ¬(W11 ∨ W21 ∨ W13)

R9: ¬W12(already in R4)

R10: ¬G12

Those are the basic rules of the game

Plus the rules
of the game

Inference by enumerating models
What is in squares (1,3), (2,1), and (2,2)?

W21 W22 W13 P21 P22 P13 R2 R4 R6 R8

1 0 0 0 0 0 0 1 1 0 1

2 0 0 0 0 0 1 1 1 1 1

3 0 0 0 0 1 0 1 1 1 1

4 0 0 0 0 1 1 1 1 1 1

5 0 0 0 1 0 0 0 1 0 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

63 0 1 1 1 1 1 0 1 1 0

64 1 1 1 1 1 1 0 0 1 0

There are 6 relevant state variables: W21, W22, W13, P21, P22, P13 : 26 = 64 comb.

KB
(interesting sentences)

KB
true

Inference by enumerating models
What is in squares (1,3), (2,1), and (2,2)?

W21 W22 W13 P21 P22 P13 R2 R4 R6 R8

1 0 0 0 0 0 0 1 1 0 1

2 0 0 0 0 0 1 1 1 1 1

3 0 0 0 0 1 0 1 1 1 1

4 0 0 0 0 1 1 1 1 1 1

5 0 0 0 1 0 0 0 1 0 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

63 0 1 1 1 1 1 0 1 1 0

64 1 1 1 1 1 1 0 0 1 0

KB
true

What do we deduce from this?

Inference by enumerating models
What is in squares (1,3), (2,1), and (2,2)?

W21 W22 W13 P21 P22 P13 R2 R4 R6 R8

1 0 0 0 0 0 0 1 1 0 1

2 0 0 0 0 0 1 1 1 1 1

3 0 0 0 0 1 0 1 1 1 1

4 0 0 0 0 1 1 1 1 1 1

5 0 0 0 1 0 0 0 1 0 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

63 0 1 1 1 1 1 0 1 1 0

64 1 1 1 1 1 1 0 0 1 0

KB
true

KB ⊨ ¬W21 ∧ ¬W22 ∧ ¬W13 ∧ ¬P21

Inference by enumerating models

• Can be naturally implemented as a depth-first

search on a constraint graph

– with backtracking

• Time complexity ~ O(2n)

where n is the number of relevant symbols

• Space complexity ~ O(n)

Not very impressive...

Although computers are really, really good with

long sequences of 0s and 1s

Some more definitions

Equivalence:

A ≡ B iff A ⊨ B and B ⊨ A

Validity:A valid sentence is one that is true in all the models (a tautology)

A ⊨ B iff (A ⇒ B) is valid

Satisfiability:A sentence is satisfiable if it is true in at least one model

A ⊨ B iff (A ∧ ¬B) is unsatisfiable

Let’s explore satisfiability first...

If KB is true, then
1 is also true.
KB entails 1.

KB ⊨ 1

KB ⊆ 1

¬1

is never true

KB = The set of models that agrees with the knowledge base
(the observed facts) [The KB is true in these models]

1 = The set of models that agrees with conclusion 1

[conclusion 1 is true in these models]

KB ∧ ¬1

If KB is true, then
1 is also true.
KB entails 1.

KB ⊨ 1

KB ⊆ 1

¬1

KB ∧ ¬1 is unsatisfiable

KB = The set of models that agrees with the knowledge base
(the observed facts) [The KB is true in these models]

1 = The set of models that agrees with conclusion 1

[conclusion 1 is true in these models]

Some more definitions

Equivalence:

A ≡ B iff A ⊨ B and B ⊨ A

A ⊨ B means that the set of models

where A is true is a subset of the models
where B is true: A ⊆ B

B ⊨ A means that the set of models

where B is true is a subset of the models
where A is true: B ⊆ A

Therefore, the set of models where A is true
must be equal to the set of models where B
is true: A ≡ B

A B

B A

A≡B

For example, A ≡ ¬(¬A)

Some more definitions

Validity: A valid sentence is true in all models (a tautology)

A B A⇒B

False False True

False True True

True False False

True True True

KB ⊨ 1

For example, A ∨ ¬A is valid

A ⊨ B iff (A ⇒ B) is valid

Logical equivalences

(A ∧ B)≡ (B ∧ A) ∧ is commutative

(A ∨ B)≡ (B ∨ A) ∨ is commutative

((A ∧ B) ∧ C)≡ (A ∧ (B ∧ C)) ∧ is associative

((A ∨ B) ∨ C)≡ (A ∨ (B ∨ C)) ∨ is associative

¬(¬A)≡ A Double-negation elimination

(A ⇒ B)≡ (¬B ⇒ ¬A) Contraposition

(A ⇒ B)≡ (¬A ∨ B) Implication elimination

(A ⇔ B)≡ ((A ⇒ B) ∧ (B ⇒ A)) Biconditional elimination

¬(A ∧ B)≡ (¬A ∨ ¬B) ”De Morgan”

¬(A ∨ B)≡ (¬A ∧ ¬B) ”De Morgan”

(A ∧ (B ∨ C))≡ ((A ∧ B) ∨ (A ∧ C)) Distributivity of ∧ over ∨

(A ∨ (B ∧ C))≡ ((A ∨ B) ∧ (A ∨ C)) Distributivity of ∨ over ∧

Example: DeMorgan

A B A ∧ B ¬(A ∧ B) ¬A ¬B ¬A ∨ ¬B

False False

False True

True False

True True

¬(A ∧ B) ≡ (¬A ∨ ¬B)

Example: DeMorgan

A B A ∧ B ¬(A ∧ B) ¬A ¬B ¬A ∨ ¬B

False False False

False True False

True False False

True True True

¬(A ∧ B) ≡ (¬A ∨ ¬B)

Example: DeMorgan

A B A ∧ B ¬(A ∧ B) ¬A ¬B ¬A ∨ ¬B

False False False True

False True False True

True False False True

True True True False

¬(A ∧ B) ≡ (¬A ∨ ¬B)

Example: DeMorgan

A B A ∧ B ¬(A ∧ B) ¬A ¬B ¬A ∨ ¬B

False False False True True True

False True False True True False

True False False True False True

True True True False False False

¬(A ∧ B) ≡ (¬A ∨ ¬B)

Example: DeMorgan

A B A ∧ B ¬(A ∧ B) ¬A ¬B ¬A ∨ ¬B

False False False True True True True

False True False True True False True

True False False True False True True

True True True False False False False

¬(A ∧ B) ≡ (¬A ∨ ¬B)

Logical equivalences

(A ∧ B)≡ (B ∧ A) ∧ is commutative

(A ∨ B)≡ (B ∨ A) ∨ is commutative

((A ∧ B) ∧ C)≡ (A ∧ (B ∧ C)) ∧ is associative

((A ∨ B) ∨ C)≡ (A ∨ (B ∨ C)) ∨ is associative

¬(¬A)≡ A Double-negation elimination

(A ⇒ B)≡ (¬B ⇒ ¬A) Contraposition

(A ⇒ B)≡ (¬A ∨ B) Implication elimination

(A ⇔ B)≡ ((A ⇒ B) ∧ (B ⇒ A)) Biconditional elimination

¬(A ∧ B)≡ (¬A ∨ ¬B) ”De Morgan”

¬(A ∨ B)≡ (¬A ∧ ¬B) ”De Morgan”

(A ∧ (B ∨ C))≡ ((A ∧ B) ∨ (A ∧ C)) Distributivity of ∧ over ∨

(A ∨ (B ∧ C))≡ ((A ∨ B) ∧ (A ∨ C)) Distributivity of ∨ over ∧

Work out some of these on paper for yourself...

Inference

• There are two main approaches towards

automating the inference:

- model enumeration

- inference rules

Slide adapted from D. Byron

Inference rules

• Inference rules are written as

If the KB contains the antecedent, you
can add the consequent, because the
KB is guaranteed to entail it

Consequent

Antecedent

Slide adapted from D. Byron

After""

Before""

Commonly used inference rules

Modus Ponens

Modus Tolens

Unit Resolution

And Elimination

Or introduction

And introduction

B

ABA ,

A

BBA



 ,

A

BBA  ,

A

BA

BA

A



BA

BA



,

Slide adapted from D. Byron

Proof for Modus Ponens

A B A ⇒ B

1 False False True

2 False True True

3 True False False

4 True True True

B

ABA ,

Proof for Modus Ponens

A B A ⇒ B

1 False False True

2 False True True

3 True False False

4 True True True

B

ABA ,

These are the cases
when A is True

Proof for Modus Ponens

A B A ⇒ B

1 False False True

2 False True True

3 True False False

4 True True True

B

ABA ,

These are the cases
when A ⇒ B is True

Proof for Modus Ponens

A B A ⇒ B

1 False False True

2 False True True

3 True False False

4 True True True

B

ABA ,

This is the case
when both A and
A ⇒ B is True

B is also True here so we can
safely add B = True to our KB

Proof for Unit Resolution

A B A ∨ B ¬A ¬B

1 False False False True True

2 False True True True False

3 True False True False True

4 True True True False False

A

BBA  ,

Proof for Unit Resolution

A B A ∨ B ¬A ¬B

1 False False False True True

2 False True True True False

3 True False True False True

4 True True True False False

A

BBA  ,

These are the cases
when A ∨ B is True

Proof for Unit Resolution

A B A ∨ B ¬A ¬B

1 False False False True True

2 False True True True False

3 True False True False True

4 True True True False False

A

BBA  ,

These are the cases
when ¬B is True

Proof for Unit Resolution

A B A ∨ B ¬A ¬B

1 False False False True True

2 False True True True False

3 True False True False True

4 True True True False False

A

BBA  ,

This is the case
when both ¬B and
A ∨ B are True

A is also True here so we can
safely add A = True to our KB

Commonly used inference rules

Modus Ponens

Modus Tolens

Unit Resolution

And Elimination

Or introduction

And introduction

B

ABA ,

A

BBA



 ,

A

BBA  ,

A

BA

BA

A



BA

BA



,

Slide adapted from D. Byron Work out these on paper for yourself too

Example: Proof in Wumpus KB

Knowledge base

1 2 3 4

1

2

3

4

1. Nothing in (1,1)

R1: ¬P11

R2: ¬B11

R3: ¬W11

R4: ¬S11

R5: ¬G11

Proof in Wumpus KB

B11 ⇔ (P12 ∨ P21) Rule of the game

Proof in Wumpus KB

B11 ⇔ (P12 ∨ P21) Rule of the game

B11 ⇒ (P12 ∨ P21) ∧ (P12 ∨ P21) ⇒ B11

Biconditional
elimination

(P12 ∨ P21) ⇒ B11 And elimination

¬B11 ⇒ ¬(P12 ∨ P21) Contraposition

¬B11 ⇒ ¬P12 ∧ ¬P21 ”De Morgan”

(A ⇔ B) ≡ ((A ⇒ B) ∧ (B ⇒ A))

Proof in Wumpus KB

B11 ⇔ (P12 ∨ P21) Rule of the game

B11 ⇒ (P12 ∨ P21) ∧ (P12 ∨ P21) ⇒ B11

Biconditional
elimination

(P12 ∨ P21) ⇒ B11 And elimination

¬B11 ⇒ ¬(P12 ∨ P21) Contraposition

¬B11 ⇒ ¬P12 ∧ ¬P21 ”De Morgan”B

BA

Proof in Wumpus KB

B11 ⇔ (P12 ∨ P21) Rule of the game

B11 ⇒ (P12 ∨ P21) ∧ (P12 ∨ P21) ⇒ B11

Biconditional
elimination

(P12 ∨ P21) ⇒ B11 And elimination

¬B11 ⇒ ¬(P12 ∨ P21) Contraposition

¬B11 ⇒ ¬P12 ∧ ¬P21 ”De Morgan”(A ⇒ B) ≡ (¬B ⇒ ¬A)

Proof in Wumpus KB

B11 ⇔ (P12 ∨ P21) Rule of the game

B11 ⇒ (P12 ∨ P21) ∧ (P12 ∨ P21) ⇒ B11

Biconditional
elimination

(P12 ∨ P21) ⇒ B11 And elimination

¬B11 ⇒ ¬(P12 ∨ P21) Contraposition

¬B11 ⇒ ¬P12 ∧ ¬P21 ”De Morgan”

¬(A ∨ B) ≡ (¬A ∧ ¬B)

Proof in Wumpus KB

B11 ⇔ (P12 ∨ P21) Rule of the game

B11 ⇒ (P12 ∨ P21) ∧ (P12 ∨ P21) ⇒ B11

Biconditional
elimination

(P12 ∨ P21) ⇒ B11 And elimination

¬B11 ⇒ ¬(P12 ∨ P21) Contraposition

¬B11 ⇒ ¬P12 ∧ ¬P21 ”De Morgan”

Proof in Wumpus KB

B11 ⇔ (P12 ∨ P21) Rule of the game

B11 ⇒ (P12 ∨ P21) ∧ (P12 ∨ P21) ⇒ B11

Biconditional
elimination

(P12 ∨ P21) ⇒ B11 And elimination

¬B11 ⇒ ¬(P12 ∨ P21) Contraposition

¬B11 ⇒ ¬P12 ∧ ¬P21 ”De Morgan”

Thus, we have proven, in four steps, that no breeze in (1,1) means
there can be no pit in either (1,2) or (2,1)

This symbolic inference can be a lot more efficient than naive
enumeration of models – if we can apply rules in the ”good” order!

An inference algorithm is guaranteed to be
complete if it uses the resolution rule

The Resolution rule

CA

CBBA



 ,

A

BBA  ,
Unit resolution

Full resolution

A clause = a disjunction (∨) of literals

A literal = a positive or a negative symbol

The Resolution rule

An inference algorithm is guaranteed to be
complete if it uses the resolution rule

mk

mk

CCCAAA

CCCBBAAA









2121

2121 ,

k

k

AAA

BBAAA









21

21 ,

Note: The resulting clause should
only contain one copy of each literal.

Resolution truth table

A B ¬B C A∨B ¬B∨C A∨C

1 0 1 1 1 1 1

1 1 0 1 1 1 1

0 1 0 1 1 1 1

0 0 1 1 0 1 1

1 0 1 0 1 1 1

1 1 0 0 1 0 1

0 1 0 0 1 0 0
0 0 1 0 0 1 0

((A ∨ B) ∧ (¬B ∨ C)) ⇒ (A ∨ C)

Resolution truth table

A B ¬B C A∨B ¬B∨C A∨C

1 0 1 1 1 1 1

1 1 0 1 1 1 1

0 1 0 1 1 1 1

0 0 1 1 0 1 1

1 0 1 0 1 1 1

1 1 0 0 1 0 1

0 1 0 0 1 0 0
0 0 1 0 0 1 0

((A ∨ B) ∧ (¬B ∨ C)) ⇒ (A ∨ C)

Proof for the resolution rule

Conjunctive normal form (CNF)

• Every sentence of propositional logic is equivalent
to a conjunction of clauses

– a clause is a finite disjunction of literals

– a literal is an atomic formula or its negation

• Sentences expressed in this way are in conjunctive
normal form – CNF

– there is also DNF (disjunctive normal form), i.e.
a disjunction of conjunctive clauses

• A sentence with exactly k literals per clause is said

to be in k-CNF

This is good, it means we can get far with the resolution inference rule.

Wumpus CNF example

B11 ⇔ (P12 ∨ P21)
Rule of the
game

B11 ⇒ (P12 ∨ P21) ∧ (P12 ∨ P21) ⇒ B11

Biconditional
elimination

(¬B11 ∨ (P12 ∨ P21)) ∧ (¬(P12 ∨ P21) ∨ B11)
Implication
elimination

(¬B11 ∨ P12 ∨ P21) ∧ ((¬P12 ∧ ¬P21) ∨ B11) ”De Morgan”

(¬B11 ∨ P12 ∨ P21) ∧ ((¬P12 ∨ B11) ∧ (B11 ∨ ¬P21)) Distributivity

(¬B11 ∨ P12 ∨ P21) ∧ (¬P12 ∨ B11) ∧ (B11 ∨ ¬P21) Voilá – CNF

(A ⇒ B) ≡ (¬A ∨ B)

(A ⇔ B) ≡ ((A ⇒ B) ∧ (B ⇒ A)) ¬(A ∨ B) ≡ (¬A ∧ ¬B)

(A ∨ (B ∧ C)) ≡ ((A ∨ B) ∧ (A ∨ C))

Wumpus CNF example

B11 ⇔ (P12 ∨ P21)
Rule of the
game

B11 ⇒ (P12 ∨ P21) ∧ (P12 ∨ P21) ⇒ B11

Biconditional
elimination

(¬B11 ∨ (P12 ∨ P21)) ∧ (¬(P12 ∨ P21) ∨ B11)
Implication
elimination

(¬B11 ∨ P12 ∨ P21) ∧ ((¬P12 ∧ ¬P21) ∨ B11) ”De Morgan”

(¬B11 ∨ P12 ∨ P21) ∧ ((¬P12 ∨ B11) ∧ (B11 ∨ ¬P21)) Distributivity

(¬B11 ∨ P12 ∨ P21) ∧ (¬P12 ∨ B11) ∧ (B11 ∨ ¬P21) Voilá – CNF

The resolution refutation
algorithm

Proves by the principle of contradiction:

Shows that KB ⊨  by proving that (KB ∧ ¬)

is unsatisfiable.

• Convert (KB ∧ ¬) to CNF

• Apply the resolution inference rule repeatedly to
the resulting clauses

• Continue until:

(a) No more clauses can be added, KB ⊭ 

(b) The empty clause (∅) is produced, KB ⊨ 

If KB is true, then
1 is also true.
KB entails 1.

KB ⊨ 1

KB ⊆ 1

¬1

KB ^ ¬1 never true

KB = The set of models that agrees with the knowledge base
(the observed facts) [The KB is true in these models]

1 = The set of models that agrees with conclusion 1

[conclusion 1 is true in these models]

Wumpus resolution example

B11 ⇔ (P12 ∨ P21)
Rule of the

game

(¬B11 ∨ P12 ∨ P21) ∧ (¬P12 ∨ B11) ∧ (B11 ∨ ¬P21) CNF

¬B11 Observation

(¬B11 ∨ P12 ∨ P21) ∧ (¬P12 ∨ B11) ∧ (B11 ∨ ¬P21) ∧ ¬B11 KB in CNF

¬P21

Hypothesis

()

KB ∧ ¬ = (¬B11∨P12∨P21)∧(¬P12∨B11)∧(B11∨¬P21)∧¬B11 ∧ P21

Wumpus resolution example

KB ∧ ¬ = (¬B11∨P12∨P21)∧(¬P12∨B11)∧(B11∨¬P21)∧¬B11 ∧ P21

¬P21

(B11 ∨ ¬P21) , ¬B11

∅

P21 , ¬P21

Not satisfied, we conclude that KB ⊨ 

Completeness of resolution

S = Set of clauses

RC(S) = Resolution closure of S

RC(S) = Set of all clauses that can be derived from

S by the resolution inference rule.

RC(S) has finite cardinality (finite number of
symbols P1, P2, ..., Pk) ⇒ Resolution refutation

must terminate.

Completeness of resolution

The ground resolution theorem

If a set S is unsatisfiable, then RC(S)
contains the empty clause ∅.

Left without proof.

Exercise

Your knowledge base (KB) is this:

ACB

CB

B





Prove, using the resolution refutation algorithm, that A is True

Exercise

ACB

CB

B





Prove, using the resolution refutation algorithm, that A is True

KB in CNF

  ACBACB

CB

B





AHypothesis: A is True

Your knowledge base (KB) is this:

Exercise

 
A

ACBACB

CB

B







KB ∧ ¬

Exercise

 
A

ACBACB

CB

B







KB ∧ ¬

CB

AACB



 ,

Exercise

 

CB

A

ACBACB

CB

B









KB ∧ ¬

Exercise

 

CB

A

ACBACB

CB

B









KB ∧ ¬

B

CBCB



 ,

Exercise

 

B

CB

A

ACBACB

CB

B











KB ∧ ¬

Exercise

 

B

CB

A

ACBACB

CB

B











KB ∧ ¬

Ø

, BB 

Exercise

 

B

CB

A

ACBACB

CB

B











KB ∧ ¬

Ø

, BB 

(KB ∧ ¬) is unsatisfiable so  is True.

Exercise

 
A

ACBACB

CB

B







KB ∧ ¬

We could have illustrated the resolution refutation steps with a graph...

B CB ACB  A

CB 

B

Ø

Problem with resolution refutation

• It may expand all nodes (all statements)

– exponential in both space and time

• Is there not a more efficient way

– to only expand those nodes (statements) that

affect our query?

Horn clauses and forward- backward
chaining

• Restricted set of clauses: Horn clauses

• disjunction of literals where at most one is positive, e.g.,

• (¬A
1
∨ ¬A

2
∨ ⋯ ∨ ¬A

k
∨ B) or (¬A

1
∨ ¬A

2
∨ ⋯ ∨ ¬A

k
)

• Why Horn clauses?
Every Horn clause can be written as an implication, e.g.,

• (¬A
1
∨ ¬A

2
∨ ⋯ ∨ ¬A

k
∨ B) ≡ (A

1
∧ A

2
∧ ⋯ ∧ A

k
) ⇒ B

• (¬A
1
∨ ¬A

2
∨ ⋯ ∨ ¬A

k
) ≡ (A

1
∧ A

2
∧ ⋯ ∧ A

k
) ⇒ False

• Inference in Horn clauses can be done using

forward-backward (F-B) chaining in linear time

Slide adapted from V. Pavlovic

Forward or Backward?

Inference can be run forward or backward

Forward-chaining:

– Use the current facts in the KB to trigger all
possible inferences

Backward-chaining:

– Work backward from the query proposition Q

– If a rule has Q as a conclusion, see if
antecedents can be found to be true

Slide adapted from D. Byron

Example

KB

We are going to check if Q is True

KB in graph form

Example

KB

We are going to check if Q is True

KB in graph form

Example of forward chaining

Slide adapted from V. Pavlovic (who borrowed from Lee?)

KB

A
B
L
M
P
Q

Agenda

AND-OR graph

Every step is Modus Ponens, e.g.

L

BALBA  ,

We’ve proved that Q is true

Slide adapted from Lee

Example of backward chaining

KB

Query: is Q true

Yes, Q is true

Wumpus world revisited

Knowledge base (KB) in initial position (ROG = Rule of the Game)

Wumpus world revisited

1-16 Bi,j ⇔ (Pi,j+1 ∨ Pi,j-1 ∨ Pi-1,j ∨ Pi+1,j) ROG: Pits

17-32 Si,j ⇔ (Wi,j+1 ∨ Wi,j-1 ∨ Wi-1,j ∨ Wi+1,j) ROG: Wumpus’ odor

33 (W1,1 ∨ W1,2 ∨ W1,3 ∨ ⋯ ∨ W4,3 ∨ W4,4) ROG: #W ≥ 1

34-153 ¬(Wi,j ∧ Wk,l) ROG: #W ≤ 1

154 (G1,1 ∨ G1,2 ∨ G1,3 ∨ ⋯ ∨ G4,3 ∨ G4,4) ROG: #G ≥ 1

155-274 ¬(Gi,j ∧ Gk,l) ROG: #G ≤ 1

275 (¬B11 ∧ ¬W11 ∧ ¬G11) ROG: Start safe

Knowledge base (KB) in initial position (ROG = Rule of the Game)

There are 5 ”on-states” for every square, {W,P,S,B,G}.
A 4  4 lattice has 16  5 = 80 distinct symbols.
Enumerating models means going through 280 models!

The physics rules (1-32) are very unsatisfying – no generalization.

Summary

• Knowledge is in the form of sentences in a
knowledge representation language

• The representation language has syntax and
semantics

• Propositional logic consists of

– proposition symbols

– logical connectives

• Inference:

– Model checking

– Inference rules (e.g. resolution)

• Horn clauses

