
Artificial Intelligence
DT8012

Adversarial search
Chapter 6, AIMA 2nd ed
Chapter 5, AIMA 3rd ed

This presentation owes a lot to V. Pavlovic @ Rutgers, who borrowed from J. D. Skrentny, who in turn borrowed from C. Dyer,...

Adversarial search

• At least two agents and a
competitive environment: Games,
economies.

• Games and AI:
– Generally considered to require

intelligence (to win)
– Have to evolve in real-time
– Well-defined and limited environment

© Thierry Dichtenmuller Board games

Games & AI

Deterministic Chance

perfect info Checkers,
Chess, Go,
Othello

Backgammon,
Monopoly

imperfect info Bridge, Poker,
Scrabble

Games and search
Traditional search: single agent, searches for its

well-being, unobstructed
Games: search against an opponent

Example: two player board game (chess, checkers,
tic-tac-toe,…)
Board configuration: unique arrangement of "pieces“

Representing board games as goal-directed search

problem (states = board configurations):
–  Initial state: Current board configuration
–  Successor function: Legal moves
–  Goal state: Winning/terminal board configuration
–  Utility function: Value of final state

Example: Tic-tac-toe
•  Initial state: 3×3 empty

table.
•  Successor function:

Players take turns marking
Ï or � in the table cells.

•  Goal state: When all the
table cells are filled or
when either player has
three symbols in a row.

•  Utility function: +1 for
three in a row, -1 if the
opponent has three in a
row, 0 if the table is filled
and no-one has three
symbols in a row.

Initial state

Ï Ï Ï
Ï Ï Ï

Ï Ï Ï

Ï �
Ï �

Ï
� Ï

� Ï
� Ï

�

Ï

�

Ï

�

Ï � Ï
� Ï Ï
� Ï �
Goal state
Utility = 0

Ï �
� Ï
� Ï Ï
Goal state
Utility = +1

Ï � �
� Ï

� Ï Ï
Goal state
Utility = -1

The minimax principle

Assume the opponent plays to win and
always makes the best possible move.

The minimax value for a node = the utility

for you of being in that state, assuming
that both players (you and the opponent)
play optimally from there on to the end.

Terminology:

MAX = you, MIN = the opponent.

Example: Tic-tac-toe

Ï �
� Ï Ï

�
Your (MAX) move
(Ï)

Assignment: Expand this tree to the end of the game.

Example: Tic-tac-toe

Ï �
� Ï Ï

�

Ï �
� Ï Ï
Ï �

Ï Ï �
� Ï Ï

�

Ï �
� Ï Ï

� Ï

Ï Ï �
� Ï Ï
� �

Ï Ï �
� Ï Ï

� �

� Ï �
� Ï Ï
Ï �

Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï

� Ï

Ï �
� Ï Ï
� � Ï

Ï Ï �
� Ï Ï
� � Ï

Ï Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï
Ï � Ï

Ï Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï
Ï � Ï

Ï Ï �
� Ï Ï
� � Ï

Utility = +1 Utility = 0 Utility = 0 Utility = 0 Utility = 0 Utility = +1

Your (MAX) move

Opponent
(MIN) move

Your
(MAX)
move

Example: Tic-tac-toe

Ï �
� Ï Ï

�

Ï �
� Ï Ï
Ï �

Ï Ï �
� Ï Ï

�

Ï �
� Ï Ï

� Ï

Ï Ï �
� Ï Ï
� �

Ï Ï �
� Ï Ï

� �

� Ï �
� Ï Ï
Ï �

Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï

� Ï

Ï �
� Ï Ï
� � Ï

Ï Ï �
� Ï Ï
� � Ï

Ï Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï
Ï � Ï

Ï Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï
Ï � Ï

Ï Ï �
� Ï Ï
� � Ï

Utility = +1 Utility = 0 Utility = 0 Utility = 0 Utility = 0 Utility = +1

Your (MAX) move

Opponent
(MIN) move

Your
(MAX)
move

+1 +1 0 0 0 0 Minimax
value

Example: Tic-tac-toe

Ï �
� Ï Ï

�

Ï �
� Ï Ï
Ï �

Ï Ï �
� Ï Ï

�

Ï �
� Ï Ï

� Ï

Ï Ï �
� Ï Ï
� �

Ï Ï �
� Ï Ï

� �

� Ï �
� Ï Ï
Ï �

Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï

� Ï

Ï �
� Ï Ï
� � Ï

Ï Ï �
� Ï Ï
� � Ï

Ï Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï
Ï � Ï

Ï Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï
Ï � Ï

Ï Ï �
� Ï Ï
� � Ï

Utility = +1 Utility = 0 Utility = 0 Utility = 0 Utility = 0 Utility = +1

Your (MAX) move

Opponent
(MIN) move

Your
(MAX)
move

+1 +1 0 0 0 0 Minimax
value

0 0 0
Minimax
value

Example: Tic-tac-toe

Ï �
� Ï Ï

�

Ï �
� Ï Ï
Ï �

Ï Ï �
� Ï Ï

�

Ï �
� Ï Ï

� Ï

Ï Ï �
� Ï Ï
� �

Ï Ï �
� Ï Ï

� �

� Ï �
� Ï Ï
Ï �

Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï

� Ï

Ï �
� Ï Ï
� � Ï

Ï Ï �
� Ï Ï
� � Ï

Ï Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï
Ï � Ï

Ï Ï �
� Ï Ï
Ï � �

� Ï �
� Ï Ï
Ï � Ï

Ï Ï �
� Ï Ï
� � Ï

Utility = +1 Utility = 0 Utility = 0 Utility = 0 Utility = 0 Utility = +1

Your (MAX) move

Opponent
(MIN) move

Your
(MAX)
move

+1 +1 0 0 0 0 Minimax
value

0 0 0
Minimax
value

0

Minimax
value

The minimax value

Minimax value for node n =

Utility(n) If n is a terminal node

Max(Minimax-values of successors) If n is a MAX node

Min(Minimax-values of successors) If n is a MIN node

High utility favours you (MAX), therefore choose move with highest utility

Low utility favours the opponent (MIN), therefore choose move with
lowest utility

The minimax algorithm
1.  Start with utilities of terminal nodes
2.  Propagate them back to root node by choosing the

minimax strategy

E D B C

A

E

D

B

C

A

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

E D B C

A

E
1

D
0

B
-5

C
-6

A

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

min

E D B C

A

E
1

D
0

B
-5

C
-6

A
1

M
1

N
3

O
2

K
0

L
2

F
7

G
-5

H
3

I
9

J
-6

max

Figure borrowed from V. Pavlovic

The minimax algorithm
1.  Start with utilities of terminal nodes
2.  Propagate them back to root node by choosing the

minimax strategy

E D B C

A

E

D

B

C

A

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

E D B C

A

E
1

D
0

B
-5

C
-6

A

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

min

E D B C

A

E
1

D
0

B
-5

C
-6

A
1

M
1

N
3

O
2

K
0

L
2

F
7

G
-5

H
3

I
9

J
-6

max

Figure borrowed from V. Pavlovic

The minimax algorithm
1.  Start with utilities of terminal nodes
2.  Propagate them back to root node by choosing the

minimax strategy

E D B C

A

E

D

B

C

A

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

E D B C

A

E
1

D
0

B
-5

C
-6

A

M
1

N
3

O
2

K
0

L
2

F
-7

G
-5

H
3

I
9

J
-6

min

E D B C

A

E
1

D
0

B
-5

C
-6

A
1

M
1

N
3

O
2

K
0

L
2

F
7

G
-5

H
3

I
9

J
-6

max

Figure borrowed from V. Pavlovic

Complexity of minimax algorithm

•  A depth-first search
–  Time complexity O(bd)
–  Space complexity O(bd)

•  Time complexity impossible in real games (with
time constraints) except in very simple games
(e.g. tic-tac-toe)

Strategies to improve minimax

1.  Remove redundant search paths
- symmetries

2.  Remove uninteresting search paths
- alpha-beta pruning

3.  Cut the search short before goal
- Evaluation functions

4.  Book moves

1. Remove redundant paths

Tic-tac-toe has mirror symmetries

and rotational symmetries

� Ï
�

Ï
�

�

�
�
Ï

�
�
Ï

= = =

Image from G. F. Luger, ”Artificial Intelligence”, 2002

First three levels of the tic-tac-toe state space reduced by symmetry

3 states
(instead of 9)

12 states
(instead of
8·9 = 72)

2. Remove uninteresting paths
If the player has a better choice

m at n’s parent node, or at
any node further up, then
node n will never be reached.

Prune the entire path below node

m’s parent node (except for
the path that m belongs to,
and paths that are equal to
this path).

Minimax is depth-first → keep

track of highest (α) and
lowest (β) values so far.

Called alpha-beta pruning.

O

W
-3

B

N
4

F G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A

Alpha-Beta Example

minimax(A,0,4)

max Call
Stack

A

A A
α=?

Slide adapted from V. Pavlovic

minimax(node, level, depth limit)

O

W
-3

B

N
4

F G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(B,1,4)

max Call
Stack

A

B B
β=?

B

min

Slide adapted from V. Pavlovic

O

W
-3

B
β=?

N
4

F G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(F,2,4)

max Call
Stack

A

F F
α=?

B

min

max

F

Slide adapted from V. Pavlovic

O

W
-3

B
β=?

N
4

F
α=?

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(N,3,4)

max Call
Stack

A

N
4

B

min

max

F

gold: terminal state

N

Slide adapted from V. Pavlovic

O

W
-3

B
β=?

N
4

F
α=

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(F,2,4) is returned to

max Call
Stack

A

 alpha = 4, maximum seen so far

B

min

max

F

F
α=4

gold: terminal state
Slide adapted from V. Pavlovic

O

W
-3

B
β=?

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(O,3,4)

max Call
Stack

A
B

min

max

F
O

min O O
β=?

gold: terminal state
Slide adapted from V. Pavlovic

O
β=?

W
-3

B
β=?

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(W,4,4)

max Call
Stack

A
B

min

max

F
O

W
-3

min

W

gold: terminal state gold: terminal state (depth limit)
Slide adapted from V. Pavlovic

O
β=

W
-3

B
β=?

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(O,3,4) is returned to

max Call
Stack

A

 beta = -3, minimum seen so far

B

min

max

F
O

min O
β=-3

gold: terminal state (depth limit)
Slide adapted from V. Pavlovic

O
β=-3

W
-3

B
β=?

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

max Call
Stack

A

 O's beta (-3) < F's alpha (4): Stop expanding O (alpha cut-off)

B

min

max

F
O

min

gold: terminal state (depth limit)
Slide adapted from V. Pavlovic

O
β=-3

W
-3

B
β=?

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example
Why?
Smart opponent selects W or worse → O's upper bound is –3
So MAX shouldn't select O:-3 since N:4 is better

max Call
Stack

A
B

min

max

F
O

min

gold: terminal state (depth limit)
Slide adapted from V. Pavlovic

O
β=-3

W
-3

B
β=?

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(F,2,4) is returned to

max Call
Stack

A
B

min

max

F min

X
-5

 alpha not changed (maximizing)

gold: terminal state (depth limit)

Slide adapted from V. Pavlovic

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(B,1,4) is returned to

max Call
Stack

A
B

min

max

min

X
-5

 beta = 4, minimum seen so far

B
β=4

gold: terminal state (depth limit)

Slide adapted from V. Pavlovic

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(G,2,4)

max Call
Stack

A
B

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G

G
-5

Slide adapted from V. Pavlovic

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(B,1,4) is returned to

max Call
Stack

A
B

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

 beta = -5, minimum seen so far

B
β=-5

Slide adapted from V. Pavlovic

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(A,0,4) is returned to

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

 alpha = -5, maximum seen so far

A
α=-5

Slide adapted from V. Pavlovic

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(C,1,4)

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C

C
β=?

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(H,2,4)

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C

C
β=?

H

H
-10

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

 minimax(C,1,4) is returned to

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C

C
β=?

H
-10

 beta = -10, minimum seen so far

C
β=-10

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C

C
β=?

H
-10

C
β=-10

 C's beta (-10) < A's alpha (-5): Stop expanding C (alpha cut-off)

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

D

C
β=?

H
-10

C
β=-10

 minimax(D,1,4)

D
0

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C
β=?

H
-10

C
β=-10

D
0

A
α=0

 minimax(D,1,4) is returned to

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C
β=?

H
-10

C
β=-10

D
0

A
α=0

 minimax(D,1,4) is returned to

Which nodes will
be expanded?

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C
β=?

H
-10

C
β=-10

D
0

A
α=0

Which nodes will
be expanded?

K
α=5

M
α=-7

E
β=-7

All

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C
β=?

H
-10

C
β=-10

D
0

A
α=0

 minimax(D,1,4) is returned to

What if we expand
from right to left?

O
β=-3

W
-3

B
β=

N
4

F
α=4

G
-5

X
-5

E D
0 C

R
0

P
9

Q
-6

S
3

T
5

U
-7

V
-9

K M H
-10

I
8 J L

2

A
α=?

Alpha-Beta Example

max Call
Stack

A

min

max

min

X
-5

B
β=4

gold: terminal state (depth limit)

G
-5

B
β=-5

A
α=-5

Slide adapted from V. Pavlovic

C
β=?

H
-10

C
β=-10

D
0

A
α=0

M
α=-7

E
β=-7

What if we expand
from right to left?

Only 4

Alpha-Beta pruning rule

Stop expanding
max node n if α(n) > β higher in the tree
min node n if β(n) < α higher in the tree

Alpha-Beta pruning rule

Stop expanding
max node n if α(n) > β higher in the tree
min node n if β(n) < α higher in the tree

Which nodes will not be expanded when expanding from left to right?

β = 8

β = 10

α = 2α = 4

β = 4
α = 4

β = 2

α = 8

α = 4

β = 3

β = 3

α = 3

β = 3

β = 2β = 2

Alpha-Beta pruning rule

Stop expanding
max node n if α(n) > β higher in the tree
min node n if β(n) < α higher in the tree

Which nodes will not be expanded when expanding from left to right?

Alpha-Beta pruning rule

Stop expanding
max node n if α(n) > β higher in the tree
min node n if β(n) < α higher in the tree

Which nodes will not be expanded when expanding from right to left?

α = 9

β = 9β = 4

β = 8

α = 2

β = 9

α = 3

β = 3

α = 3

β = 8
α = 8

β = 4

β = 8β = 7

α = 4

β = 9β = 2 β = 2β = 3

β = 3β = 4

α = 4

Alpha-Beta pruning rule

Stop expanding
max node n if α(n) > β higher in the tree
min node n if β(n) < α higher in the tree

Which nodes will not be expanded when expanding from right to left?

3. Cut the search short

•  Use depth-limit and estimate utility for
non-terminal nodes (evaluation function)
– Static board evaluation (SBE)
– Must be easy to compute

Example, chess:

...Control"Center "Balance" Material" γβα ++=SBE
Material balance = value of white pieces – value of black pieces, where
pawn = +1, knight & bishop = +3, rook = +5, queen = +9, king = ?

The parameters (α,β,γ,...) can be learned (adjusted) from
experience.

http://en.wikipedia.org/wiki/Computer_chess

Leaf evaluation

For most chess positions, computers cannot look ahead to all final possible
positions. Instead, they must look ahead a few plies and then evaluate the
final board position. The algorithm that evaluates final board positions is
termed the "evaluation function", and these algorithms are often vastly
different between different chess programs.

Nearly all evaluation functions evaluate positions in units and at the least
consider material value. Thus, they will count up the amount of material on
the board for each side (where a pawn is worth exactly 1 point, a knight is
worth 3 points, a bishop is worth 3 points, a rook is worth 5 points and a
queen is worth 9 points). The king is impossible to value since its loss causes
the loss of the game. For the purposes of programming chess computers,
however, it is often assigned a value of appr. 200 points.

Evaluation functions take many other factors into account, however, such as
pawn structure, the fact that doubled bishops are usually worth more,
centralized pieces are worth more, and so on. The protection of kings is
usually considered, as well as the phase of the game (opening, middle or
endgame).

Evaluation function

•  Here wi are weighting factors and Fi are
features (for position n), e.g. number of
pawns, knights, control over central
squares, etc.

•  Assumes independence (that features are
additive and don’t interact)

)()()()(2211 nFwnFwnFwnf MM+++= …

Evaluation function: Deep Fritz Chess

• Employ a ”null move” strategy: MAX
is allowed two moves (MIN does not
move at all in between).
– If the evaluation function after these

two steps is not high – then don’t
search further along this path.

– Saves time (doesn’t generate any MIN
move and cuts off many useless
searches)

Reinforcement learning

•  A method to learn an evaluation function (e.g.
For Chess: learn the weights wi).

•  Reinforcement learning is about receiving
feedback from the environment (occasionally)
and updating the values when this happens.

Agent

Percepts

Environment

Sensors

Effectors
Actions

? REWARD

Reinforcement learning example
Robot learning to navigate in a maze

Goal node

Example borrowed from Matthias R. Brust, Univ. Luxemburg

Reinforcement learning example
Robot learning to navigate in a maze

Generate a path at random and run until
the goal node is reached.

Example borrowed from Matthias R. Brust, Univ. Luxemburg

Reinforcement learning example
Robot learning to navigate in a maze

Assign a bit of the goal node’s utility value
to the next last square (the square just before
we reached the goal node).

Example borrowed from Matthias R. Brust, Univ. Luxemburg

Reinforcement learning example
Robot learning to navigate in a maze

Generate a new random path and run
until a square with utility value is encountered.

Example borrowed from Matthias R. Brust, Univ. Luxemburg

Reinforcement learning example
Robot learning to navigate in a maze

Assign a bit of the utility value to the
next last square...etc.

Example borrowed from Matthias R. Brust, Univ. Luxemburg

Reinforcement learning example
Robot learning to navigate in a maze

After some (a long) time do we have
utility estimates of all squares.

Example borrowed from Matthias R. Brust, Univ. Luxemburg

KnightCap (1997)
http://samba.org/KnightCap/

•  Uses reinforcement
learning to learn an
evaluation function for
Chess.

•  Initial values for pieces:
–  1 for a pawn
–  4 for a knight
–  4 for a bishop
–  6 for a rook
–  12 for a queen

•  After self-learning:
–  1 for a pawn
–  3 for a knight
–  3 for a bishop
–  5 for a rook
–  9 for a queen

Position (control, number of pieces attacking king) features crucial

4. Book moves

• Build a database (look-up table) of
endgames, openings, etc.

• Use this instead of minimax when
possible.

Games with chance

• Dice games, card games,...
• Extend the minimax tree with chance

layers.
A
α=

B
β=2

7 2

C
β=6

9 6

D
β=0

5 0

E
β=-4

8 -4

50/50 50/50

.5 .5 .5 .5

max

chance

min

Animation adapted from V. Pavlovic

50/50
4

50/50
-2

Compute the expected
value over outcomes.

A
α=4

Select move with
the highest
expected value.

