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Adversarial search 

• At least two agents and a 
competitive environment: Games, 
economies. 

• Games and AI: 
– Generally considered to require 

intelligence (to win) 
– Have to evolve in real-time 
– Well-defined and limited environment 
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Games & AI 

Deterministic Chance 

perfect info Checkers, 
Chess, Go, 
Othello 

Backgammon, 
Monopoly 

imperfect info Bridge, Poker, 
Scrabble 



Games and search 
Traditional search: single agent, searches for its 

well-being, unobstructed 
Games: search against an opponent 

Example: two player board game (chess, checkers, 
tic-tac-toe,…) 
Board configuration: unique arrangement of "pieces“ 

 
Representing board games as goal-directed search 

problem (states = board configurations): 
–  Initial state: Current board configuration 
–  Successor function: Legal moves 
–  Goal state: Winning/terminal board configuration 
–  Utility function: Value of final state 



Example: Tic-tac-toe 
•  Initial state: 3×3 empty 

table. 
•  Successor function: 

Players take turns marking 
Ï or � in the table cells. 

•  Goal state: When all the 
table cells are filled or 
when either player has 
three symbols in a row. 

•  Utility function: +1 for 
three in a row, -1 if the 
opponent has three in a 
row, 0 if the table is filled 
and no-one has three 
symbols in a row. 
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The minimax principle 

Assume the opponent plays to win and 
always makes the best possible move. 

 
The minimax value for a node = the utility 

for you of being in that state, assuming 
that both players (you and the opponent) 
play optimally from there on to the end. 

 
Terminology:  

MAX = you, MIN = the opponent. 



Example: Tic-tac-toe 

Ï � 
� Ï Ï 

� 
Your (MAX) move 
(Ï) 

Assignment: Expand this tree to the end of the game. 



Example: Tic-tac-toe 

Ï � 
� Ï Ï 

� 

Ï � 
� Ï Ï 
Ï � 

Ï Ï � 
� Ï Ï 

� 

Ï � 
� Ï Ï 

� Ï 

Ï Ï � 
� Ï Ï 
� � 

Ï Ï � 
� Ï Ï 

� � 

� Ï � 
� Ï Ï 
Ï � 

Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 

� Ï 

Ï � 
� Ï Ï 
� � Ï 

Ï Ï � 
� Ï Ï 
� � Ï 

Ï Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 
Ï � Ï 

Ï Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 
Ï � Ï 

Ï Ï � 
� Ï Ï 
� � Ï 

Utility = +1 Utility = 0 Utility = 0 Utility = 0 Utility = 0 Utility = +1 

Your (MAX) move 

Opponent  
(MIN) move 

Your  
(MAX)  
move 



Example: Tic-tac-toe 

Ï � 
� Ï Ï 

� 

Ï � 
� Ï Ï 
Ï � 

Ï Ï � 
� Ï Ï 

� 

Ï � 
� Ï Ï 

� Ï 

Ï Ï � 
� Ï Ï 
� � 

Ï Ï � 
� Ï Ï 

� � 

� Ï � 
� Ï Ï 
Ï � 

Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 

� Ï 

Ï � 
� Ï Ï 
� � Ï 

Ï Ï � 
� Ï Ï 
� � Ï 

Ï Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 
Ï � Ï 

Ï Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 
Ï � Ï 

Ï Ï � 
� Ï Ï 
� � Ï 

Utility = +1 Utility = 0 Utility = 0 Utility = 0 Utility = 0 Utility = +1 

Your (MAX) move 

Opponent  
(MIN) move 

Your  
(MAX)  
move 

+1 +1 0 0 0 0 Minimax 
value 



Example: Tic-tac-toe 

Ï � 
� Ï Ï 

� 

Ï � 
� Ï Ï 
Ï � 

Ï Ï � 
� Ï Ï 

� 

Ï � 
� Ï Ï 

� Ï 

Ï Ï � 
� Ï Ï 
� � 

Ï Ï � 
� Ï Ï 

� � 

� Ï � 
� Ï Ï 
Ï � 

Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 

� Ï 

Ï � 
� Ï Ï 
� � Ï 

Ï Ï � 
� Ï Ï 
� � Ï 

Ï Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 
Ï � Ï 

Ï Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 
Ï � Ï 

Ï Ï � 
� Ï Ï 
� � Ï 

Utility = +1 Utility = 0 Utility = 0 Utility = 0 Utility = 0 Utility = +1 

Your (MAX) move 

Opponent  
(MIN) move 

Your  
(MAX)  
move 

+1 +1 0 0 0 0 Minimax 
value 

0 0 0 
Minimax 
value 



Example: Tic-tac-toe 

Ï � 
� Ï Ï 

� 

Ï � 
� Ï Ï 
Ï � 

Ï Ï � 
� Ï Ï 

� 

Ï � 
� Ï Ï 

� Ï 

Ï Ï � 
� Ï Ï 
� � 

Ï Ï � 
� Ï Ï 

� � 

� Ï � 
� Ï Ï 
Ï � 

Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 

� Ï 

Ï � 
� Ï Ï 
� � Ï 

Ï Ï � 
� Ï Ï 
� � Ï 

Ï Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 
Ï � Ï 

Ï Ï � 
� Ï Ï 
Ï � � 

� Ï � 
� Ï Ï 
Ï � Ï 

Ï Ï � 
� Ï Ï 
� � Ï 

Utility = +1 Utility = 0 Utility = 0 Utility = 0 Utility = 0 Utility = +1 

Your (MAX) move 

Opponent  
(MIN) move 

Your  
(MAX)  
move 

+1 +1 0 0 0 0 Minimax 
value 

0 0 0 
Minimax 
value 

0 

Minimax 
value 



The minimax value 

Minimax value for node n = 

Utility(n) If n is a terminal node 

Max(Minimax-values of successors) If n is a MAX node 

Min(Minimax-values of successors) If n is a MIN node 

High utility favours you (MAX), therefore choose move with highest utility 
 
Low utility favours the opponent (MIN), therefore choose move with  
lowest utility 



The minimax algorithm 
1.  Start with utilities of terminal nodes 
2.  Propagate them back to root node by choosing the 

minimax strategy 
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Figure borrowed from V. Pavlovic 



The minimax algorithm 
1.  Start with utilities of terminal nodes 
2.  Propagate them back to root node by choosing the 

minimax strategy 

E D B C 

A 

E 
 

D 
 

B 
 

C 
 

A 
 

M 
1 

N 
3 

O 
2 

K 
0 

L 
2 

F 
-7 

G 
-5 

H 
3 

I 
9 

J 
-6 

E D B C 

A 

E 
1 

D 
0 

B 
-5 

C 
-6 

A 
 

M 
1 

N 
3 

O 
2 

K 
0 

L 
2 

F 
-7 

G 
-5 

H 
3 

I 
9 

J 
-6 

min 

E D B C 

A 

E 
1 

D 
0 

B 
-5 

C 
-6 

A 
1 

M 
1 

N 
3 

O 
2 

K 
0 

L 
2 

F 
7 

G 
-5 

H 
3 

I 
9 

J 
-6 

max 

Figure borrowed from V. Pavlovic 



The minimax algorithm 
1.  Start with utilities of terminal nodes 
2.  Propagate them back to root node by choosing the 

minimax strategy 

E D B C 

A 

E 
 

D 
 

B 
 

C 
 

A 
 

M 
1 

N 
3 

O 
2 

K 
0 

L 
2 

F 
-7 

G 
-5 

H 
3 

I 
9 

J 
-6 

E D B C 

A 

E 
1 

D 
0 

B 
-5 

C 
-6 

A 
 

M 
1 

N 
3 

O 
2 

K 
0 

L 
2 

F 
-7 

G 
-5 

H 
3 

I 
9 

J 
-6 

min 

E D B C 

A 

E 
1 

D 
0 

B 
-5 

C 
-6 

A 
1 

M 
1 

N 
3 

O 
2 

K 
0 

L 
2 

F 
7 

G 
-5 

H 
3 

I 
9 

J 
-6 

max 

Figure borrowed from V. Pavlovic 



Complexity of minimax algorithm 

•  A depth-first search 
–  Time complexity O(bd) 
–  Space complexity O(bd) 

•  Time complexity impossible in real games (with 
time constraints) except in very simple games 
(e.g. tic-tac-toe) 



Strategies to improve minimax 

1.  Remove redundant search paths 
- symmetries 

2.  Remove uninteresting search paths 
- alpha-beta pruning 

3.  Cut the search short before goal 
- Evaluation functions 

4.  Book moves 



1. Remove redundant paths 

Tic-tac-toe has mirror symmetries 

and rotational symmetries 
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Image from G. F. Luger, ”Artificial Intelligence”, 2002 

First three levels of the tic-tac-toe state space reduced by symmetry 

3 states 
(instead of 9) 

12 states 
(instead of  
8·9 = 72) 



2. Remove uninteresting paths 
If the player has a better choice 

m at n’s parent node, or at 
any node further up, then 
node n will never be reached. 

 
Prune the entire path below node 

m’s parent node (except for 
the path that m belongs to, 
and paths that are equal to 
this path). 

 
Minimax is depth-first → keep 

track of highest (α) and 
lowest (β) values so far. 

 
Called alpha-beta pruning. 
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Which nodes will  
be expanded? 
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from right to left? 
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Alpha-Beta pruning rule 

Stop expanding 
max node n if α(n) > β higher in the tree 
min node n if β(n) < α higher in the tree 

 



Alpha-Beta pruning rule 

Stop expanding 
max node n if α(n) > β higher in the tree 
min node n if β(n) < α higher in the tree 

Which nodes will not be expanded when expanding from left to right? 
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Alpha-Beta pruning rule 

Stop expanding 
max node n if α(n) > β higher in the tree 
min node n if β(n) < α higher in the tree 

Which nodes will not be expanded when expanding from left to right? 



Alpha-Beta pruning rule 

Stop expanding 
max node n if α(n) > β higher in the tree 
min node n if β(n) < α higher in the tree 

Which nodes will not be expanded when expanding from right to left? 

α = 9

β = 9β = 4

β = 8

α = 2

β = 9

α = 3

β = 3

α = 3

β = 8
α = 8

β = 4
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Alpha-Beta pruning rule 

Stop expanding 
max node n if α(n) > β higher in the tree 
min node n if β(n) < α higher in the tree 

Which nodes will not be expanded when expanding from right to left? 



3. Cut the search short 

•  Use depth-limit and estimate utility for 
non-terminal nodes (evaluation function) 
– Static board evaluation (SBE) 
– Must be easy to compute 

Example, chess: 

...Control"Center "Balance" Material" γβα ++=SBE
Material balance = value of white pieces – value of black pieces, where 
pawn = +1, knight & bishop = +3, rook = +5, queen = +9, king = ? 

The parameters (α,β,γ,...) can be learned (adjusted) from  
experience. 



http://en.wikipedia.org/wiki/Computer_chess 

Leaf evaluation 
 
For most chess positions, computers cannot look ahead to all final possible 
positions. Instead, they must look ahead a few plies and then evaluate the 
final board position. The algorithm that evaluates final board positions is 
termed the "evaluation function", and these algorithms are often vastly 
different between different chess programs. 
 
Nearly all evaluation functions evaluate positions in units and at the least 
consider material value. Thus, they will count up the amount of material on 
the board for each side (where a pawn is worth exactly 1 point, a knight is 
worth 3 points, a bishop is worth 3 points, a rook is worth 5 points and a 
queen is worth 9 points). The king is impossible to value since its loss causes 
the loss of the game. For the purposes of programming chess computers, 
however, it is often assigned a value of appr. 200 points. 
 
Evaluation functions take many other factors into account, however, such as 
pawn structure, the fact that doubled bishops are usually worth more, 
centralized pieces are worth more, and so on. The protection of kings is 
usually considered, as well as the phase of the game (opening, middle or 
endgame). 
 



Evaluation function 

•  Here wi are weighting factors and Fi are 
features (for position n), e.g. number of 
pawns, knights, control over central 
squares, etc. 

•  Assumes independence (that features are 
additive and don’t interact) 

)()()()( 2211 nFwnFwnFwnf MM+++= …



Evaluation function: Deep Fritz Chess 

• Employ a ”null move” strategy: MAX 
is allowed two moves (MIN does not 
move at all in between). 
– If the evaluation function after these 

two steps is not high – then don’t 
search further along this path. 

– Saves time (doesn’t generate any MIN 
move and cuts off many useless 
searches) 



Reinforcement learning 

•  A method to learn an evaluation function (e.g. 
For Chess: learn the weights wi). 

•  Reinforcement learning is about receiving 
feedback from the environment (occasionally) 
and updating the values when this happens. 

Agent 

Percepts 

Environment 

Sensors 

Effectors 
Actions 

? REWARD 



Reinforcement learning example 
Robot learning to navigate in a maze 

Goal node 

Example borrowed from Matthias R. Brust, Univ. Luxemburg 



Reinforcement learning example 
Robot learning to navigate in a maze 

Generate a path at random and run until 
the goal node is reached. 

Example borrowed from Matthias R. Brust, Univ. Luxemburg 



Reinforcement learning example 
Robot learning to navigate in a maze 

Assign a bit of the goal node’s utility value 
to the next last square (the square just before 
we reached the goal node). 

Example borrowed from Matthias R. Brust, Univ. Luxemburg 



Reinforcement learning example 
Robot learning to navigate in a maze 

Generate a new random path and run 
until a square with utility value is encountered. 

Example borrowed from Matthias R. Brust, Univ. Luxemburg 



Reinforcement learning example 
Robot learning to navigate in a maze 

Assign a bit of the utility value to the 
next last square...etc. 

Example borrowed from Matthias R. Brust, Univ. Luxemburg 



Reinforcement learning example 
Robot learning to navigate in a maze 

After some (a long) time do we have  
utility estimates of all squares. 

Example borrowed from Matthias R. Brust, Univ. Luxemburg 



KnightCap (1997) 
http://samba.org/KnightCap/ 

•  Uses reinforcement 
learning to learn an 
evaluation function for 
Chess. 

•  Initial values for pieces:  
–  1 for a pawn  
–  4 for a knight  
–  4 for a bishop 
–  6 for a rook 
–  12 for a queen 

•  After self-learning: 
–  1 for a pawn 
–  3 for a knight 
–  3 for a bishop 
–  5 for a rook 
–  9 for a queen 

Position (control, number of pieces attacking king) features crucial  



4. Book moves 

• Build a database (look-up table) of 
endgames, openings, etc. 

• Use this instead of minimax when 
possible. 



Games with chance 

• Dice games, card games,... 
• Extend the minimax tree with chance 

layers. 
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Animation adapted from V. Pavlovic 

50/50 
4 

50/50 
-2 

Compute the expected 
value over outcomes. 

A 
α=4 

Select move with 
the highest 
expected value. 


