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Uninformed search
Chapter 3, AIMA



A "problem” consists of

An initial state, 6(0)

A list of possible actions, a, for the agent
A goal test (there can be many goal states)
A path cost

One way to solve this is to search for a path

&0) — o(1) = 6(2) — ... = O(N)
such that 6(N) is a goal state.
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Goal State

State: Specification of each of
the eight tiles in the nine
squares (the blank is in the
remaining square).

Initial state: Any state.

Successor function
(actions): Blank moves Leff,
Right, Up, or Down.

Goal test: Check whether the
goal state has been reached.

Path cost: Each move costs 1.
The path cost = the number of
moves.



Example: 8-puzzle

7 2 4 1 2 « State: Specification of each of
the eight tiles in the nine
5 6 3l 4 lll 5 squares (the blank is in the
remaining square).
8 ||| 3 || 1 6 7 ||| 8
Examples:
Start State Goal State
0={7,2,4,5,0,6, 8, 3, 1}
2 8 3 1 2 3 0={2,8,3,1,6,4,7,0, 5}
1 6 4 8 4
7 5 7 6 5

Start State Goal State



Example: 8-puzzle

711 2 ||| 4 1 ||| 2
) CIEG
|

8‘3\1 6 (|| 7 [| 8

« Successor function
(actions): Blank moves Leff,
Right, Up, or Down.

Start State Goal State

2 8 3 1 2 3

1 6 ||| 4 8 4

3 sl [

Start State Goal State



Expanding 8-puzzle

2 8 3
6={2,8,3,1,6,4,7,0, 5)
1 6 4
7 5
Blank moves left Blank moves right
Aves up l \
2 8 3 2 8 3 2 8 3
1 6 4 1 4 1 6 4
7 5 7 6 5 7 5
0={2,8,3,1,6,4,0,7, 5} 0={2,8,3,1,6,4,7,5, 0}

0=1{2,8,31,0,4,7,6,5)



Uninformed search

Searching for the goal without knowing in which direction it
IS.
— Breadth-first
— Depth-first
— lterative deepening

(Depth and breadth refers to the search tree)

We evaluate the algorithms by their:

— Completeness (do they explore all possibilities)

— Optimality (do they find the solution with minimum path cost)
— Time complexity (number of nodes expanded during search)
— Space complexity (maximum number of nodes in memory)



Breadth-first

Image from Russel & Norvig, AIMA, 2003
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. Breadth-first finds the solution that is closest (in the graph) to the start
node (always expands the shallowest node).

. Keeps O(b%) nodes in memory — exponential memory requirement!

. Complete (finds a solution if there is one)

. Not necessarily optimal (optimal if cost is the same for each step)
. Exponential space complexity (very bad)

. Exponential time complexity

b = branching factor, d = depth



Image from N. J. Nilsson, Artificial Intelligence — A New Synthesis, 1998
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Depth-first

Image from Russel & Norvig, AIMA, 2003
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b = branching factor, d = depth

Keeps O(bd) nodes in memory.

Requires a depth limit to avoid
infinite paths
(limit is 3 in the figure).

Incomplete (is not guaranteed to
find a solution)

Not optimal
Linear space complexity (good)
Exponential time complexity



Image from N. J. Nilsson, Artificial Intelligence — A New Synthesis, 1998
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lterative deepening

Image from Russel & Norvig, AIMA, 2003
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Black nodes are removed from memory

Keeps O(bd) nodes in
memory.

Iteratively increases the depth
limit.

Complete (like BFS)

Optimal (if step costs are
same)

Linear space complexity
(like DFS)

Exponential time complexity

The preferred search method
for large search spaces with
unknown depth.

b = branching factor, d = depth



Exercise

Exercise 3.4: Show that the 8-puzzle states
are divided into two disjoint sets, such that
no state in one set can be transformed into
a state in the other set by any number of
moves. Devise a procedure that will tell
you which class a given state is in, and
explain why this is a good thing to have for
generating random states.



Proof for exercise 3.4:

Definition: Define the order of 2 8>3
counting from the upper left corner 131":‘ 4
to the lower right corner (see it
figure). 7 >5

Let NV denote the number of lower
numbers following a number (so- > I s Wl 3
called "inversions”) when counting
in this fashion. 10 6 || 4

N =11 in the figure. 7 5

@ @@ @@ @@ @ Yellow tiles are inverted
’E’E‘@ ﬁ@@ ﬁ@@ ’ﬁ@ ﬁ’ﬁ”ﬁI relgtivetothetilewith
7] Isf [z [l [0 [sf [z Isd (2] [sf]  ©mthetoprow

1 1 + 1 =11

+ 6 + + 2



Proof for exercise 3.4:

Proposition: /N is either always even or odd
(i.e. Nmod?2 is conserved).

Proof:

(1) Sliding the blank along a row does not change the row
number and not the internal order of the tiles, i.e. N (and
thus also Nmod?2) is conserved.

(2) Sliding the blank between rows does not change
Nmod?2 either, as shown on the following slide.



Proof for exercise 3.4:

We only need to consider tiles B, C, and D since Al B
the relative order of the other tiles remains the
same. D
F G
e IfB>C andB > D, then the move removes

two inversions.

« |fB>C andB <D, then the move adds one A
inversion and removes one (sum = 0).

« If B <C and B < D, then the move adds two D (|| B
inversions. F Il e

The number of inversions changes in steps of 2.



Observation

The upper state has N =0

The lower (goal) state has N =7

We cannot go from one to the other.




Exercise

Exercise 3.9: The missionaries and cannibals: Three missionaries and three cannibals are on one
side of a river, along with a boat that can hold one or two people (one for rowing). Find a way to
get everyone to the other side, without ever leaving a group of missionaries in one place
outnumbered by the cannibals in that place (the cannibals eat the missionaries then).

a. Formulate the problem precisely, making only those distinctions necessary to ensure a valid
solution. Draw a diagram of the complete state space.

b. Implement and solve the problem optimally using an appropriate search algorithm. Is it a good
idea to check for repeated states?

C. Whyldg) you think people have a hard time solving this puzzle, given that the state space is so
simple®

Image from http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html



Missionaries & Cannibals

State: 0 = (M,C,B) signifying the number of missionaries, cannibals, and boats on the left

bank. The start state is (3,3,1) and the goal state is (0,0,0).

Actions (successor function): (10 possible but only 5 available each move due to boat)

One cannibal/missionary crossing L — R: subtract (0,1,1) or (1,0,1)
Two cannibals/missionaries crossing L — R: subtract (0,2,1) or (2,0,1)
One cannibal/missionary crossing R — L: add (1,0,1) or (0,1,1)

Two cannibals/missionaries crossing R — L: add (2,0,1) or (0,2,1)
One cannibal and one missionary crossing: add/subtract (1,1,1)

Image from http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html



Missionaries & Cannibals states
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Assumes that passengers have to get out of the boat after the trip.
Red states = missionaries get eaten.



Breadth-first search on
Missionaries & Cannibals



Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)

Red states = missionaries get eaten

00



Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states
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Breadth-first search on
Missionaries & Cannibals

-(0,2,1) [2 cannibals cross L — R]
+(0,1,1) [1 cannibal crosses R — L]
-(0,2,1) [2 cannibals cross L — R]
+(0,1,1) [1 cannibal crosses R — L]
-(2,0,1) [2 missionaries cross L — R]
+(1,1,1) [1 cannibal & 1 missionary
cross R — L]
-(2,0,1) [2 missionaries cross L — R]
+(0,1,1) [1 cannibal crosses R — L]
-(0,2,1) [2 cannibals cross L — R]
+(1,0,1) [1 missionary crosses R — L]
-(1,1,1) [1 cannibal & 1 missionary
cross L — R]

This is an optimal solution (minimum
number of crossings). Would Depth-
first work?
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Breadth-first search on
Missionaries & Cannibals

-(0,2,1) [2 cannibals cross L — R]

+(0,1,1) [1 cannibal crosses R — L

-(0,2,1) [2 cannibals cross L — R] @

+(0,1,1) [1 cannibal crosses R — L]

-(2,0,1) [2 missionaries cross L — R]

+(1,1,1) [1 cannibal & 1 missionary
cross R — L]

-(2,0,1) [2 missionaries cross L — R]
+(0,1,1) [1 cannibal crosses R — L]

-(0,2,1) [2 cannibals cross L — R] \(
+(1,0,1) [1 missionary crosses R %N
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-(1,1,1) [1 cannibal & 1 missionary
cross L — R]
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This is an optimal solution (minimum
number of crossings). Would Depth-
first work?
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Breadth-first search on _
Missionaries & Cannibals ‘ €29

439 621 63) ox) @ 629
Expanded 48 nodes
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Depth-first search on ‘ ‘
Missionaries & Cannibals ‘ ‘ @ ‘
Expanded 30 nodes ‘ ‘ ‘
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(if repeated states are 629 610

checked, otherwise we end
up in an endless loop)
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