Artificial Intelligence
DT8012

Uninformed search
Chapter 3, AIMA

A "problem” consists of

An initial state, 6(0)

A list of possible actions, a, for the agent
A goal test (there can be many goal states)
A path cost

One way to solve this is to search for a path

&0) — o(1) = 6(2) — ... = O(N)
such that 6(N) is a goal state.

7 2

5

8 3
Start State

2 8

1 6

Start State

Example: 8-puzzle

1 2

3 4 5

6 7 8
Goal State

1 2 3

8 4

7 6 5

Goal State

State: Specification of each of
the eight tiles in the nine
squares (the blank is in the
remaining square).

Initial state: Any state.

Successor function
(actions): Blank moves Leff,
Right, Up, or Down.

Goal test: Check whether the
goal state has been reached.

Path cost: Each move costs 1.
The path cost = the number of
moves.

Example: 8-puzzle

7 2 4 1 2 « State: Specification of each of
the eight tiles in the nine
5 6 3l 4 lll 5 squares (the blank is in the
remaining square).
8 ||| 3 || 1 6 7 ||| 8
Examples:
Start State Goal State
0={7,2,4,5,0,6, 8, 3, 1}
2 8 3 1 2 3 0={2,8,3,1,6,4,7,0, 5}
1 6 4 8 4
7 5 7 6 5

Start State Goal State

Example: 8-puzzle

711 2 ||| 4 1 ||| 2
) CIEG
|

8‘3\1 6 (|| 7 [| 8

« Successor function
(actions): Blank moves Leff,
Right, Up, or Down.

Start State Goal State

2 8 3 1 2 3

1 6 ||| 4 8 4

3 sl [

Start State Goal State

Expanding 8-puzzle

2 8 3
6={2,8,3,1,6,4,7,0, 5)
1 6 4
7 5
Blank moves left Blank moves right
Aves up l \
2 8 3 2 8 3 2 8 3
1 6 4 1 4 1 6 4
7 5 7 6 5 7 5
0={2,8,3,1,6,4,0,7, 5} 0={2,8,3,1,6,4,7,5, 0}

0=1{2,8,31,0,4,7,6,5)

Uninformed search

Searching for the goal without knowing in which direction it
IS.
— Breadth-first
— Depth-first
— lterative deepening

(Depth and breadth refers to the search tree)

We evaluate the algorithms by their:

— Completeness (do they explore all possibilities)

— Optimality (do they find the solution with minimum path cost)
— Time complexity (number of nodes expanded during search)
— Space complexity (maximum number of nodes in memory)

Breadth-first

Image from Russel & Norvig, AIMA, 2003

>@ (@
> 9

Nodes marked with open circles = fringe = in the memory

. Breadth-first finds the solution that is closest (in the graph) to the start
node (always expands the shallowest node).

. Keeps O(b%) nodes in memory — exponential memory requirement!

. Complete (finds a solution if there is one)

. Not necessarily optimal (optimal if cost is the same for each step)
. Exponential space complexity (very bad)

. Exponential time complexity

b = branching factor, d = depth

Image from N. J. Nilsson, Artificial Intelligence — A New Synthesis, 1998
19

o i I Breadth-first search for 8-
/*353 e puzzle.
. 17 il The path marked by bold
= . RN D arrows is the solution.
i s
;2g\—>%4§ }/gz .
15 e Y s Note: This assumes that
118[4 »{1]8 1[2]3] Goal
St et e 7 S node you apply goal test
node 113 Tie 14 26 it immediately after
i expansion
om g A (not the case for AIMA
6 . 6 / implementation)
e)i
- 12 e o
Ly i
2 LI 2[8[3 . .
i / s If we keep track of visited
/B S states — Graph search
S /\ i (rather than tree search)
22:; 21 213
Solution in node # 46 10 2 it

Depth-first

Image from Russel & Norvig, AIMA, 2003

YD
© ©
g B

vy
e
o

Black nodes are removed from memory

%?ﬂ

b = branching factor, d = depth

Keeps O(bd) nodes in memory.

Requires a depth limit to avoid
infinite paths
(limit is 3 in the figure).

Incomplete (is not guaranteed to
find a solution)

Not optimal
Linear space complexity (good)
Exponential time complexity

Image from N. J. Nilsson, Artificial Intelligence — A New Synthesis, 1998

9
2]8[3
116
71514
4
2]8]3
1[6[4
715
8
2[813
14
7615
1 3 7
Start [2]8[3 {2]8]3 2] [3
116[4] 1] 4] 1]814
node 5 5] 6
6
[813]
114
1716
2
2]8[3
64
5
5
FIE]
64
1{7

Solution in node # 31

19
AE 2] 8
1163 »1[6]3
71514 71514
2[8]3
18 516
21813 7l 14
il (6
7i5[4 21 13
11816
17 71514
AR 218]3
1145 16
76 715]4
283
16 114[5
318 7116
11413 112]3
71615 PBE y
8 718
14 6[3
2
15 1lels) ;
2[5 PAEIE! 2
1[8[4 »{1]8 P
7165 71615 8][4
71615
14 26 LAp
rgv HZg
4
e —— 1 e
4
[6]115
13 25 8[1]3
2]813] 2[8[3 4
711 . .5
(L6 S
B
LIE}
24 71615
3 21313
4
12 71615 1
1813 .
A e
15 6[7]4
afs
2[8
[k 33
1 415
11 22 1131
[2[813 318, 1715
6l [4 »[6
7 1 el | 3]
6]814]
5]
21 3
3 4
3 705
[117]5
21, [4
z
10 20 =
HE FIMEK] 3
GE 2 an
1713 715 1715

Goal
node

Depth-first on the 8-puzzle
example.

Depth =5

lterative deepening

Image from Russel & Norvig, AIMA, 2003

Limit = 0 @]
B) o/®\>© c/.\o
@ ©
Limit =2 @ @ @
@ © ©) © @ G
6 X6
@ @
Q Q
Limit =3 @ (D) @) @
@ © ©) ® © ©
© & ©
@ O
@ @ @ @
@ © @) © @ ® @ ©
& © %6 ® 6
%6 OB ®
@ @ @
Q Q @
6 @ @ O

Black nodes are removed from memory

Keeps O(bd) nodes in
memory.

Iteratively increases the depth
limit.

Complete (like BFS)

Optimal (if step costs are
same)

Linear space complexity
(like DFS)

Exponential time complexity

The preferred search method
for large search spaces with
unknown depth.

b = branching factor, d = depth

Exercise

Exercise 3.4: Show that the 8-puzzle states
are divided into two disjoint sets, such that
no state in one set can be transformed into
a state in the other set by any number of
moves. Devise a procedure that will tell
you which class a given state is in, and
explain why this is a good thing to have for
generating random states.

Proof for exercise 3.4:

Definition: Define the order of 2 8>3
counting from the upper left corner 131":‘ 4
to the lower right corner (see it
figure). 7 >5

Let NV denote the number of lower
numbers following a number (so- > I s Wl 3
called "inversions”) when counting
in this fashion. 10 6 || 4

N =11 in the figure. 7 5

@ @@ @@ @@ @ Yellow tiles are inverted
’E’E‘@ ﬁ@@ ﬁ@@ ’ﬁ@ ﬁ’ﬁ”ﬁI relgtivetothetilewith
7] Isf [z [l [0 [sf [z Isd (2] [sf] ©mthetoprow

1 1 + 1 =11

+ 6 + + 2

Proof for exercise 3.4:

Proposition: /N is either always even or odd
(i.e. Nmod?2 is conserved).

Proof:

(1) Sliding the blank along a row does not change the row
number and not the internal order of the tiles, i.e. N (and
thus also Nmod?2) is conserved.

(2) Sliding the blank between rows does not change
Nmod?2 either, as shown on the following slide.

Proof for exercise 3.4:

We only need to consider tiles B, C, and D since Al B
the relative order of the other tiles remains the
same. D
F G
e IfB>C andB > D, then the move removes

two inversions.

« |fB>C andB <D, then the move adds one A
inversion and removes one (sum = 0).

« If B <C and B < D, then the move adds two D (|| B
inversions. F Il e

The number of inversions changes in steps of 2.

Observation

The upper state has N =0

The lower (goal) state has N =7

We cannot go from one to the other.

Exercise

Exercise 3.9: The missionaries and cannibals: Three missionaries and three cannibals are on one
side of a river, along with a boat that can hold one or two people (one for rowing). Find a way to
get everyone to the other side, without ever leaving a group of missionaries in one place
outnumbered by the cannibals in that place (the cannibals eat the missionaries then).

a. Formulate the problem precisely, making only those distinctions necessary to ensure a valid
solution. Draw a diagram of the complete state space.

b. Implement and solve the problem optimally using an appropriate search algorithm. Is it a good
idea to check for repeated states?

C. Whyldg) you think people have a hard time solving this puzzle, given that the state space is so
simple®

Image from http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html

Missionaries & Cannibals

State: 0 = (M,C,B) signifying the number of missionaries, cannibals, and boats on the left

bank. The start state is (3,3,1) and the goal state is (0,0,0).

Actions (successor function): (10 possible but only 5 available each move due to boat)

One cannibal/missionary crossing L — R: subtract (0,1,1) or (1,0,1)
Two cannibals/missionaries crossing L — R: subtract (0,2,1) or (2,0,1)
One cannibal/missionary crossing R — L: add (1,0,1) or (0,1,1)

Two cannibals/missionaries crossing R — L: add (2,0,1) or (0,2,1)
One cannibal and one missionary crossing: add/subtract (1,1,1)

Image from http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html

Missionaries & Cannibals states

SR
2N Y X X X X

®® @
&)
&)

@ ® 3
®
®

Assumes that passengers have to get out of the boat after the trip.
Red states = missionaries get eaten.

Breadth-first search on
Missionaries & Cannibals

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)

Red states = missionaries get eaten

00

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

J3E0

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

*

&

SHEStS
®:e0:

EHE®HE

@

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

‘i

&

SHCSES

@

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

%

&

SHERtS

‘

1@
GHEH®

® O

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

W
w
-

‘7

@
S

&

SHCSES

‘X

e
2 0lee
I

&

®)

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

W
w
-

@
S

’7
BB ®-

&
L 21 SICRERT 36
@@G;l@@

00 o

XX}
oy

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

‘7
BB ®-

L 2L JIORERT LRl 26
@@ﬁ;ﬁ;&

®
o000 O::

oLy

066
&r
&

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

‘7

w
w
-

&

&

BB ®-
® 0

fi

o000 o i

ly-

100060
:2leee
BB @1

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

w
w
-

‘o

o000 o::

‘7
BB ®-

®
‘
&)

=)
®)

Ly

AR CS

900000
D300 @&
‘
@
‘

Breadth-first search on
Missionaries & Cannibals

States are generated by applying:

+/-(1,0,1)
+/-(0,1,1)
+/-(2,0,1)
+/-(0,2,1)
+-(1,1,1)

In that order (left to right)
Red states = missionaries get eaten

= repeated states

‘i
SHCRES

B
o000 o

®0
e

o000
CEOMER IS

bt

@
‘
ole
HH
2@
®r
‘

®

Breadth-first search on
Missionaries & Cannibals

-(0,2,1) [2 cannibals cross L — R]
+(0,1,1) [1 cannibal crosses R — L]
-(0,2,1) [2 cannibals cross L — R]
+(0,1,1) [1 cannibal crosses R — L]
-(2,0,1) [2 missionaries cross L — R]
+(1,1,1) [1 cannibal & 1 missionary
cross R — L]
-(2,0,1) [2 missionaries cross L — R]
+(0,1,1) [1 cannibal crosses R — L]
-(0,2,1) [2 cannibals cross L — R]
+(1,0,1) [1 missionary crosses R — L]
-(1,1,1) [1 cannibal & 1 missionary
cross L — R]

This is an optimal solution (minimum
number of crossings). Would Depth-
first work?

W
w
[N

[

eoee o

®

.ﬁ
CHOSES

&
‘_
9

&
®

Sty

o000

L5

-0 @ &
wleieres

B

BE

e
3
._

@
®

Breadth-first search on
Missionaries & Cannibals

-(0,2,1) [2 cannibals cross L — R]

+(0,1,1) [1 cannibal crosses R — L

-(0,2,1) [2 cannibals cross L — R] @

+(0,1,1) [1 cannibal crosses R — L]

-(2,0,1) [2 missionaries cross L — R]

+(1,1,1) [1 cannibal & 1 missionary
cross R — L]

-(2,0,1) [2 missionaries cross L — R]
+(0,1,1) [1 cannibal crosses R — L]

-(0,2,1) [2 cannibals cross L — R] \(
+(1,0,1) [1 missionary crosses R %N

®

&f
EHE)
wleeradels.

/é

S

Sty

-(1,1,1) [1 cannibal & 1 missionary
cross L — R]

eoee o

This is an optimal solution (minimum
number of crossings). Would Depth-
first work?

3
‘
Bl
G
é&
@
._

W
w
[N

Breadth-first search on _
Missionaries & Cannibals ‘ €29

439 621 63) ox) @ 629
Expanded 48 nodes

e 0 @ o @
019 62

Depth-first search on ‘ ‘
Missionaries & Cannibals ‘ ‘ @ ‘
Expanded 30 nodes ‘ ‘ ‘

®: @
(if repeated states are 629 610

checked, otherwise we end
up in an endless loop)

B

OT®

2@
®r
._

@
®

