
Artificial Intelligence 
DT8012 

Uninformed search 
Chapter 3, AIMA 



A ”problem” consists of 
•  An initial state, θ(0) 
•  A list of possible actions, α, for the agent 
•  A goal test (there can be many goal states) 
•  A path cost 

One way to solve this is to search for a path  
θ(0) → θ(1) → θ(2) → ... → θ(N) 

such that θ(N) is a goal state. 
 
 



Example: 8-puzzle 
•  State: Specification of each of 

the eight tiles in the nine 
squares (the blank is in the 
remaining square). 

•  Initial state: Any state. 
•  Successor function 

(actions): Blank moves Left, 
Right, Up, or Down. 

•  Goal test: Check whether the 
goal state has been reached. 

•  Path cost: Each move costs 1. 
The path cost = the number of 
moves. 

2 8 3 

1 6 4 

7 5 

1 2 3 

8 

6 

4 

7 5 

Start State Goal State 



Example: 8-puzzle 
•  State: Specification of each of 

the eight tiles in the nine 
squares (the blank is in the 
remaining square). 

•  Initial state: Any state. 
•  Successor function 

(actions): Blank moves Left, 
Right, Up, or Down. 

•  Goal test: Check whether the 
goal state has been reached. 

•  Path cost: Each move costs 1. 
The path cost = the number of 
moves. 

2 8 3 

1 6 4 

7 5 

1 2 3 

8 

6 

4 

7 5 

Start State Goal State 

 
Examples:  
 
θ  = {7, 2, 4, 5, 0, 6, 8, 3, 1} 

θ  = {2, 8, 3, 1, 6, 4, 7, 0, 5} 



Example: 8-puzzle 
•  State: Specification of each of 

the eight tiles in the nine 
squares (the blank is in the 
remaining square). 

•  Initial state: Any state. 
•  Successor function 

(actions): Blank moves Left, 
Right, Up, or Down. 

•  Goal test: Check whether the 
goal state has been reached. 

•  Path cost: Each move costs 1. 
The path cost = the number of 
moves. 

2 8 3 

1 6 4 

7 5 

1 2 3 

8 

6 

4 

7 5 

Start State Goal State 



Expanding 8-puzzle 
2 8 3 

1 6 4 

7 5 

2 8 3 

1 6 4 

7 5 

2 8 3 

1 

6 

4 

7 5 

2 8 3 

1 6 4 

7 5 

Blank moves left Blank moves right 

Blank moves up 

 
θ  = {2, 8, 3, 1, 6, 4, 7, 0, 5} 
 

 
θ  = {2, 8, 3, 1, 6, 4, 0, 7, 5} 
 

 
θ  = {2, 8, 3, 1, 0, 4, 7, 6, 5} 
 

 
θ  = {2, 8, 3, 1, 6, 4, 7, 5, 0} 
 



Uninformed search 
Searching for the goal without knowing in which direction it 

is. 
–  Breadth-first 
–  Depth-first 
–  Iterative deepening 

(Depth and breadth refers to the search tree) 
 
We evaluate the algorithms by their: 
–  Completeness (do they explore all possibilities) 
–  Optimality (do they find the solution with minimum path cost) 
–  Time complexity (number of nodes expanded during search) 
–  Space complexity (maximum number of nodes in memory) 



Breadth-first 

•  Breadth-first finds the solution that is closest (in the graph) to the start 
node (always expands the shallowest node). 

•  Keeps O(bd) nodes in memory → exponential memory requirement! 

•  Complete (finds a solution if there is one) 
•  Not necessarily optimal (optimal if cost is the same for each step) 
•  Exponential space complexity (very bad) 
•  Exponential time complexity 

b = branching factor, d = depth 

Image from Russel & Norvig, AIMA, 2003 

Nodes marked with open circles = fringe = in the memory 



Image from N. J. Nilsson, Artificial Intelligence – A New Synthesis, 1998 

Breadth-first search for 8-
puzzle. 

The path marked by bold 
arrows is the solution. 

 
Note: This assumes that 

you apply goal test 
immediately after 
expansion  
(not the case for AIMA 
implementation) 

 
 
If we keep track of visited 

states → Graph search 
(rather than tree search) 

 
Solution in node # 46 



Depth-first 
•  Keeps O(bd) nodes in memory. 
•  Requires a depth limit to avoid 

infinite paths  
(limit is 3 in the figure). 

•  Incomplete (is not guaranteed to 
find a solution) 

•  Not optimal 
•  Linear space complexity (good) 
•  Exponential time complexity 

Image from Russel & Norvig, AIMA, 2003 

 Black nodes are removed from memory 

b = branching factor, d = depth 



Image from N. J. Nilsson, Artificial Intelligence – A New Synthesis, 1998 

Depth-first on the 8-puzzle 
example. 

 
Depth = 5 
 

Solution in node # 31 



Iterative deepening 
•  Keeps O(bd) nodes in 

memory. 
•  Iteratively increases the depth 

limit. 

•  Complete (like BFS) 
•  Optimal (if step costs are 

same) 
•  Linear space complexity  

(like DFS) 
•  Exponential time complexity 

•  The preferred search method 
for large search spaces with 
unknown depth. 

Image from Russel & Norvig, AIMA, 2003 

 Black nodes are removed from memory b = branching factor, d = depth 



Exercise 

Exercise 3.4: Show that the 8-puzzle states 
are divided into two disjoint sets, such that 
no state in one set can be transformed into 
a state in the other set by any number of 
moves. Devise a procedure that will tell 
you which class a given state is in, and 
explain why this is a good thing to have for 
generating random states. 



Proof for exercise 3.4: 
Definition: Define the order of 

counting from the upper left corner 
to the lower right corner (see 
figure).   

Let N denote the number of lower 
numbers following a number (so-
called ”inversions”) when counting 
in this fashion. 

N = 11 in the figure. 

2 8 3 

1 6 4 

7 5 

2 8 3 

1 6 4 

7 5 

Yellow tiles are inverted 
relative to the tile with 
”8” in the top row. 

2 8 3 

1 6 4 

7 5 

2 8 3 

1 6 4 

7 5 

2 8 3 

1 6 4 

7 5 

2 8 3 

1 6 4 

7 5 

6 1 2 1 

2 8 3 

1 6 4 

7 5 

1 + + + + = 11 



Proof for exercise 3.4: 

Proposition: N is either always even or odd  
(i.e. Nmod2 is conserved). 

Proof:  
(1) Sliding the blank along a row does not change the row 

number and not the internal order of the tiles, i.e. N (and 
thus also Nmod2) is conserved. 

(2) Sliding the blank between rows does not change 
Nmod2 either, as shown on the following slide. 



Proof for exercise 3.4: 
We only need to consider tiles B, C, and D since 

the relative order of the other tiles remains the 
same. 

 
•  If B > C and B > D, then the move removes 

two inversions. 
•  If B > C and B < D, then the move adds one 

inversion and removes one (sum = 0). 
•  If B < C and B < D, then the move adds two 

inversions. 

The number of inversions changes in steps of 2. 

A B C 

D 

G 

E 

F H 

A 

B 

C 

D 

G 

E 

F H 



Observation 

The upper state has N = 0 
 
 
 
 
The lower (goal) state has N = 7 
 
 
We cannot go from one to the other. 

1 2 3 

8 

6 

4 

7 5 

1 2 3 

4 5 6 

7 8 



Exercise 
Exercise 3.9: The missionaries and cannibals: Three missionaries and three cannibals are on one 

side of a river, along with a boat that can hold one or two people (one for rowing). Find a way to 
get everyone to the other side, without ever leaving a group of missionaries in one place 
outnumbered by the cannibals in that place (the cannibals eat the missionaries then). 

 
a.  Formulate the problem precisely, making only those distinctions necessary to ensure a valid 

solution. Draw a diagram of the complete state space. 
b.  Implement and solve the problem optimally using an appropriate search algorithm. Is it a good 

idea to check for repeated states? 
c.  Why do you think people have a hard time solving this puzzle, given that the state space is so 

simple? 

Image from http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html 



Missionaries & Cannibals 
State: θ = (M,C,B) signifying the number of missionaries, cannibals, and boats on the left 

bank. The start state is (3,3,1) and the goal state is (0,0,0).  
Actions (successor function): (10 possible but only 5 available each move due to boat) 
•  One cannibal/missionary crossing L → R: subtract (0,1,1) or (1,0,1) 
•  Two cannibals/missionaries crossing L → R: subtract (0,2,1) or (2,0,1) 
•  One cannibal/missionary crossing R → L: add (1,0,1) or (0,1,1) 
•  Two cannibals/missionaries crossing R → L: add (2,0,1) or (0,2,1) 
•  One cannibal and one missionary crossing: add/subtract (1,1,1) 

Image from http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html 



Missionaries & Cannibals states 

Assumes that passengers have to get out of the boat after the trip. 
Red states = missionaries get eaten. 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 

 
States are generated by applying: 

+/- (1,0,1) 
+/- (0,1,1) 
+/- (2,0,1) 
+/- (0,2,1) 
+/- (1,1,1) 

In that order (left to right) 

Red states = missionaries get eaten 

Yellow states = repeated states 

! 



Breadth-first search on  
Missionaries & Cannibals 
-(0,2,1)  [2 cannibals cross L → R] 
+(0,1,1)  [1 cannibal crosses R → L] 
-(0,2,1)  [2 cannibals cross L → R] 
+(0,1,1)  [1 cannibal crosses R → L] 
-(2,0,1)  [2 missionaries cross L → R] 
+(1,1,1)  [1 cannibal & 1 missionary 

 cross R → L] 
-(2,0,1)  [2 missionaries cross L → R] 
+(0,1,1)  [1 cannibal crosses R → L] 
-(0,2,1)  [2 cannibals cross L → R] 
+(1,0,1)  [1 missionary crosses R → L] 
-(1,1,1)  [1 cannibal & 1 missionary 

 cross L → R] 

 

This is an optimal solution (minimum 
number of crossings). Would Depth-
first work? 

! 



Breadth-first search on  
Missionaries & Cannibals 
-(0,2,1)  [2 cannibals cross L → R] 
+(0,1,1)  [1 cannibal crosses R → L] 
-(0,2,1)  [2 cannibals cross L → R] 
+(0,1,1)  [1 cannibal crosses R → L] 
-(2,0,1)  [2 missionaries cross L → R] 
+(1,1,1)  [1 cannibal & 1 missionary 

 cross R → L] 
-(2,0,1)  [2 missionaries cross L → R] 
+(0,1,1)  [1 cannibal crosses R → L] 
-(0,2,1)  [2 cannibals cross L → R] 
+(1,0,1)  [1 missionary crosses R → L] 
-(1,1,1)  [1 cannibal & 1 missionary 

 cross L → R] 

 

This is an optimal solution (minimum 
number of crossings). Would Depth-
first work? 

! 



Breadth-first search on  
Missionaries & Cannibals 

Expanded 48 nodes 

 

 

Depth-first search on 
Missionaries & Cannibals 

Expanded 30 nodes 

 

(if repeated states are 
checked, otherwise we end 
up in an endless loop) 

! 


