
Artificial Intelligence

Intelligent Agents

Chapter 2, AIMA



An Agent

AgentEnvironment

Sensors

Effectors

Percepts

Actions

???



An Agent

AgentEnvironment

Sensors

Effectors

Percepts

Actions

???

An agent perceives its environment

through sensors and acts upon that 

environment through effectors

Percepts Actions





















=





















=

)(

)(

)(

)(     

)(

)(

)(

)(
2

1

2

1

t

t

t

t

tx

tx

tx

t

KD 






αx

Agent function:

)]0(),...,1(),([)( xxxα −= ttft



Example: Vacuum Cleaner World

A B

Image borrowed from V. Pavlovic, Rutgers

Percepts: x1(t)  {A, B},    x2(t)  {clean, dirty}

Actions: (t)  {left, right, suck}



A B

Image borrowed from V. Pavlovic, Rutgers

Percepts: x1(t)  {A, B}, x2(t)  {clean, dirty}

Actions: (t)  {left, right, suck}

Example: Vacuum Cleaner World



A B

Image borrowed from V. Pavlovic, Rutgers

Percepts: x1(t)  {A, B},    x2(t)  {clean, dirty}

Actions: (t)  {left, right, suck}

Example: Vacuum Cleaner World



A B

Image borrowed from V. Pavlovic, Rutgers

Percepts: x1(t)  {A, B},    x2(t)  {clean, dirty}

Actions: (t)  {left, right, suck}

Example: Vacuum Cleaner World



A B

Image borrowed from V. Pavlovic, Rutgers

suckt
dirty

t =







= )(

*
)( αx rightt

clean

A
t =








= )()( αx leftt

clean

B
t =








= )()( αx

This is an example of a reflex agent

Percepts: x1(t)  {A, B},    x2(t)  {clean, dirty}

Actions: (t)  {left, right, suck}

Example: Vacuum Cleaner World



A B

Image borrowed from V. Pavlovic, Rutgers

Percepts: x1(t)  {A, B},    x2(t)  {clean, dirty, filthy}

Actions: (t)  {left, right, suck}

Example: Vacuum Cleaner World



A B

Image borrowed from V. Pavlovic, Rutgers

Percepts: x1(t)  {A, B},    x2(t)  {clean, dirty, filthy}

Actions: (t)  {left, right, suck}

















−

−

=







= rightt

clean

A
t )()( αx

















−

=







= right

suck

t
dirty

A
t )()( αx

















−

−=







=

suck

t
A

t )(
filthy

)( αx

Example: Vacuum Cleaner World



A Rational Agent

A rational agent does ”the right thing”

For each possible percept sequence, x(t)...x(0),
a rational agent should select the action that

is expected to maximise its performance measure

(given the evidence provided by the

percept sequence and whatever built-in

knowledge the agent has)

How to design a good performance measure?



Optimality

• Rationality ≠ Optimality

– rational decision depends on the agent’s percepts 

in the past (up to now)

– and the expected experiences in the future

• Not on future observations

– nor experiences of others (unknown to the agent)

• Optimality = Rationality + Omniscience

– omniscience is perfect knowledge

– rationality is optimising expected performance



Vacuum Cleaner Performance Measure





−

+
=

rightor  left move eachFor 

up vacuumed dirt of piece eachFor 

1

100
S

A B

Image borrowed from V. Pavlovic, Rutgers









−

−

+

=

squares dirtythan more If

time at square dirty eachFor 

time at square clean eachFor 

  1000

 1

 1

N

t

t

S
State defined
performance
measure

Action defined
performance
measure



Task Description

A problem to which the agent is a solution

P
Performance 

measure
Maximize number of clean cells & minimize 

number of dirty cells.

E Environment
Discrete cells.  Each is either dirty or clean. 

Partially observable environment, static, 

deterministic, and sequential. Single agent.

A Actuators
Mouthpiece for sucking dirt.

Engine & wheels for moving. 

S Sensors Dirt sensor & position sensor.



Environment Types

• Single vs multi-agent

• Accessible vs inaccessible

– partially observable

• Deterministic vs nondeterministic

– apparently nondeterministic

– strategic environment

• Episodic vs sequential

• Static vs dynamic

• Discrete vs continuous



Basic Classes of Agents

• Random agent

• Fixed (sequential) agent

• Reflex agent

– no internal memory

– can be simple (table lookup) or very complex

• Model-based agent

– knowledge about how the world works

• Goal-based agent

• Utility-based agent

• Learning agent



The reflex agent

The action (t) is selected 

based on only the most 

recent percept x(t)

No consideration of percept 

or action history.

In many domains will end up 

in infinite loops of various 

kinds.

Appears intelligent when it 

woks, but often ends up 

trying to do the same thing 

over and over again.

The random agent:

The action (t) is selected 

purely at random, without 

any consideration of the 

percept x(t)

The sequential agent:

(t) are selected in a fixed 

sequence, also without 

any consideration x(t)

Neither is very intelligent.

)]([)( tft xα =rnd)( =tα

][)( tft =α



Simple Reflex Agent
sensors

What the world 

is like now

What action I 

should do now
Condition - action rules

effectors

E
n
v

iro
n
m

en
t

function SIMPLE-REFLEX-AGENT(percept) returns action

static: rules, a set of condition-action rules

state INTERPRET-INPUT (percept)

rule  RULE-MATCH (state,rules)

action RULE-ACTION [rule]

return action

A simple reflex agent works by finding a rule whose condition 

matches the current situation (as defined by the percept) and then 

doing the action associated with that rule.

First match.

No further matches sought.

Only one level of deduction.

Slide borrowed from Sandholm @ CMU



Simple Reflex Agent

• Table lookup of condition-action pairs defining all possible

condition-action rules necessary to interact with the environment 

• e.g. IF car-in-front-is-breaking THEN initiate-breaking

• Problems

– Table is often too big to generate/store (e.g. a self-driving car)

– Takes long time to build the table

– No knowledge of non-perceptual parts of the current state

– Not adaptive to changes in the environment & requires entire 

table to be updated if changes occur

– No looping capability: can’t make actions conditional

• Complex reflex agents avoid the need to explicitly generate and 

store full lookup table

Slide based on Sandholm @ CMU



Complex Reflex Agent

• Conceptually equivalent to lookup table

– how to make it easier to create and understand?

– classical programming paradigm:
IF …  THEN …

– it is very natural for people to think this way

– but it is hard to express this knowledge precisely

• Knowledge-based systems (rule-based expert systems)

– separate the domain-dependent knowledge 

– from domain-independent inference engine



Main Components of a KBS

U
s
e
r 

In
te

rf
a
c
e
 Knowledge Base

Inference Engine

Expertise

Expertise

Facts / Information

User

Developer

Adapted from slide by Franz J. Kurfess @ Cal Poly



Knowledge Base

• Consists of static and dynamic parts

– static knowledge are rules and facts compiled 

as a part of the creation of the system

– dynamic knowledge consists of facts related to a 

particular consultation (query) of the system

• Initially, the dynamic knowledge base, often 

called working memory, is empty

– as consultation progresses, dynamic knowledge 

base grows and is used in decision making



Inference Engine

• Performs reasoning in a cycle

– until no further reasoning can be done

1. Rule Matching

– figure out which rules are applicable

2. Conflict resolution

– select the active rule with highest priority

3. Execution

– perform the actions described by the 

consequent of the selected rule

Adapted from slide by Franz J. Kurfess @ Cal Poly



Forward and Backward Chaining

• Forward chaining is data-driven

– reasoning from facts to the conclusion

– as soon as facts are available, they are used to 

match antecedents of rules

– often used for monitoring and control

• Backward chaining is query-driven

– starts from a hypothesis (query)

– searches for supporting rules and facts 

– until it can either confirm or reject the hypothesis

– often used in diagnostic and consultation
Adapted from slide by Franz J. Kurfess @ Cal Poly



Basic Classes of Agents

• Fixed (sequential) agent

• Random agent

• Reflex agent

– no internal memory

– can be simple (table lookup) or complex

• Model-based agent

– knowledge about how the wold works

• Goal-based agent

• Utility-based agent

• Learning agent



The goal based agent

The action (t) is selected 

based on the percept x(t),

the current state q(t), and 

the future expected set of 

states q(t+1), q(t+2), …

One or more of the states 

are considered to be the 

goal state(s).

The model based agent

The action (t) is selected 

based on the percept x(t) 

and the current state q(t).

The world model or state 

q(t) keeps track of past 

actions and the percept 

history.

)]0(),...,(              

),...,(),([)(

qq

q

t

Tttft += xα

)]0(),...,1(              

),0(),...,1([)(

)](),([)(

αα

xx

xα

−

−=

=

t

tt

ttft

qq

q



Agent With Internal State

sensors

What the world 

looks like now

What action I 

should do now
Condition - action rules

effectors

E
n
v

iro
n
m

en
t

State

How the world evolves

What my actions  do

Slide borrowed from Sandholm @ CMU

Model based agent



Agent With Explicit Goals

sensors

What the world 

is like now

What action I 

should do now
Goals

effectors

E
n
v

iro
n
m

en
t

State

How the world evolves

What my actions do

What it will be like 

if I do action A

Goal based agent

Slide borrowed from Sandholm @ CMU



The learning agent

The learning agent is similar 

to the utility based agent. 

The difference is that the 

knowledge parts (i.e. the 

prediction of future states, 

the utility, ...etc.) can now 

adapt and improve with 

experience.

The utility based agent

The action (t) is selected 

based on the percept x(t),

and the utility of future, 

current and past states q(t)

The utility function U(q(t))

expresses the benefit the 

agent has from being in 

state q(t)

))]0((ˆ)),...,(ˆ              

)),...,(ˆ(ˆ),([ˆ)(

qq

q

Ut(U

TtUtft += xα

))]0(()),...,((              

)),...,((),([)(

qq

q

UtU

TtUtft += xα



Utility-Based Agent

sensors

What the world 

is like now

What action I 

should do now

Utility

effectors

E
n
v

iro
n
m

en
t

State

How the world evolves

What my actions do

What it will be like 

if I do action A

How happy I will 

be in such as a state

Slide borrowed from Sandholm @ CMU



Basic Classes of Agents

• Fixed (sequential) agent

• Random agent

• Reflex agent

– no internal memory

– can be simple (table lookup) or complex

• Model-based agent

– knowledge about how the wold works

• Goal-based agent

• Utility-based agent

• Learning agent



Questions?



Discussion

Exercise 2.2:

Both the performance measure and the utility 

function measure how well an agent is doing. 

Explain the difference between the two.

They can be the same but do not have to be. The 

performance function is used externally to 

measure the agent’s performance. The utility 

function is used internally to measure (or 

estimate) the performance. There is always a 

performance function but not always an utility 

function. 



Discussion

Exercise 2.2:

Both the performance measure and the utility 

function measure how well an agent is doing. 

Explain the difference between the two.

They can be the same but do not have to be. The 

performance function is used externally to 

measure the agent’s performance. The utility 

function is used internally (by the agent) to 

measure (or estimate) it’s performance. There is 

always a performance function but not always an 

utility function (cf. random agent). 



Exercise

Exercise 2.4:

Let’s examine the rationality of various vacuum-cleaner 
agent functions:

a. Show that the simple vacuum-cleaner agent function 
described in figure 2.3 is indeed rational under the 
assumptions listed on page 36.

b. Describe a rational agent function for the modified 
performance measure that deducts one point for each 
movement. Does the corresponding agent program 
require internal state?

c. Discuss possible agent designs for the cases in which 
clean squares can become dirty and the geography of 
the environment is unknown. Does it make sense for 
the agent to learn from its experience in these cases? If 
so, what should it learn?



What should be

the performance

measure?



Possible states of the world:

[A, Clean] & [B, Clean]

[A, Clean] & [B, Dirty]

[A, Dirty] & [B, Dirty]

[A, Dirty] & [B, Clean]

How long will it take for the agent to clean the world?

Possible states of the world:

[A, Clean] & [B, Clean]  world is clean after 0 steps

[A, Clean] & [B, Dirty]  world is clean after 2 steps if agent is in A and...

[A, Dirty] & [B, Dirty]  world is clean after 3 steps

[A, Dirty] & [B, Clean]  world is clean after 1 step if agent is in A and...

Can any agent do it faster (in fewer steps)?



Exercise 2.4

a. If (square A dirty & square B clean) then the world is clean after 
one step. No agent can do this quicker.
If (square A clean & square B dirty) then the world is clean after 
two steps. No agent can do this quicker.
If (square A dirty & square B dirty) then the world is clean after 
three steps. No agent can do this quicker.

The agent is rational (elapsed time is our performance measure).

A B

Image borrowed from V. Pavlovic, Rutgers



Exercise

Exercise 2.4:

Let’s examine the rationality of various vacuum-cleaner 
agent functions:

a. Show that the simple vacuum-cleaner agent function 
described in figure 2.3 is indeed rational under the 
assumptions listed on page 36.

b. Describe a rational agent function for the modified 
performance measure that deducts one point for each 
movement. Does the corresponding agent program 
require internal state?

c. Discuss possible agent designs for the cases in which 
clean squares can become dirty and the geography of 
the environment is unknown. Does it make sense for 
the agent to learn from its experience in these cases? If 
so, what should it learn?



Exercise 2.4

b. The reflex agent will continue moving even after the world is 
clean. An agent that has memory would do better than the reflex 
agent if there is a penalty for each move. Memory prevents the 
agent from visiting squares where it has already cleaned.

(The environment has no production of dirt; a dirty square that has 
been cleaned remains clean.)

A B

Image borrowed from V. Pavlovic, Rutgers



Exercise

Exercise 2.4:

Let’s examine the rationality of various vacuum-cleaner 
agent functions:

a. Show that the simple vacuum-cleaner agent function 
described in figure 2.3 is indeed rational under the 
assumptions listed on page 36.

b. Describe a rational agent function for the modified 
performance measure that deducts one point for each 
movement. Does the corresponding agent program 
require internal state?

c. Discuss possible agent designs for the cases in which 
clean squares can become dirty and the geography of 
the environment is unknown. Does it make sense for 
the agent to learn from its experience in these cases? If 
so, what should it learn?



Exercise 2.4

c. If the agent has a very long lifetime (infinite) then it is better to 
learn a map. The map can tell where the probability is high for dirt 
to accumulate. The map can carry information about how much 
time has passed since the vacuum cleaner agent visited a certain 
square, and thus also the probability that the square has become 
dirty.
If the agent has a short lifetime, then it may just as well wander 
around randomly (there is no time to build a map).

A B

Image borrowed from V. Pavlovic, Rutgers



Lab 1

• Implementation of different kinds of agents

– random agent

– sequential agent

– reflex agent

– agent with memory

• Similar technology, two example domains

– poker player & mobile robot

• Python https://www.python.org/

– V-REP http://www.coppeliarobotics.com/

https://www.python.org/
http://www.coppeliarobotics.com/

