Artificial Intelligence

Learning from observations
 Chapter 18, AIMA

Machine Learning

Two types of learning in AI

Deductive: Deduce new/interesting rules/facts from already known rules/facts.

$$
\begin{aligned}
& \qquad(A \Rightarrow B \Rightarrow C) \Rightarrow(A \Rightarrow C) \\
& \text { We have been talking about this }
\end{aligned}
$$

Inductive: Learn new rules/facts from experience. Experience can have various forms, one of the common approaches is to use a set of examples from the past D :

$$
\mathcal{D}=\{\mathbf{x}(n), y(n)\}_{n=1 \ldots N} \Rightarrow(A \Rightarrow C)
$$

.Data mining
using historical data to improve decisions
.medical records \rightarrow medical knowledge
.Software engineering
creating applications we are unable to program
autonomous driving
speech recognition
.Self-customising programs
adapting to a particular user/domain news reader that learns user interests

Learning Problem

Learning $=$ improving with experience at some task
. Improve over task T

- With respect to performance measure P
. Based on experience E

Example:

- T: Decide upon next move in checkers
. P: \% of games won in a tournament
. E: opportunity to play against self

Three types of inductive learning

Supervised.

- The machine has access to a teacher who is able to provide the correct decisions for training examples.
active $<$ passive learning

Reinforced:

- The machine is given feedback concerning the decision it makes, but no information about possible alternatives

Unsupervised:

- No feedback is available, the machine must search for "order" and "structure" in the environment

Supervised Learning

-Classification
-learning categories (discriminative model)
-choose between small number of
alternatives
-mark news items as
interesting/uninteresting

- diagnose diseases
-Regression
-learning function values (generative model)
-numerical outnut

Inductive Learning Example

?	?	?	
	?		
?			
		1	
	1		
+1			
0			
+1	,$f(\mathbf{x})=+1$		
0			
+1			
0			

Etc...
$\bullet f(\mathbf{x})$ is the target function

- An example is a pair $[\mathbf{x}, f(\mathbf{x})]$
-Learning task: find a hypothesis h such that $h(\mathbf{x})$ 国 $f(\mathbf{x})$
based on a training set of examples $\mathcal{D}=\left\{\left[\mathbf{x}_{i}, f\left(\mathbf{x}_{i}\right)\right]\right\}, i=1,2, \ldots, N$
Inspired by a slide from V. Pavlovic

Inductive Learning Example

Consistent linear fit

(a)

Consistent $7^{\text {th }}$ order polynomial fit

(b)

Inconsistent linear fit.
Consistent $6^{\text {th }}$ order polynomial fit.

Consistent sinusoidal fit

(c)

(d)

- Construct h so that it agrees with f.
-The hypothesis h is consistent if it agrees with f on all observations.
-How to achieve good generalization?
-Ockham's razor: Select the simplest consistent hypothesis.

Inductive Learning Example

Example from V. Pavlovic @ Rutgers

Inductive learning - example C

Example from V. Pavlovic @ Rutgers

Inductive learning - example C

Example from V. Pavlovic @ Rutgers

Inductive learning - example C

Sometimes a consistent hypothesis is worse than an inconsistent one overfitting

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong Warm	Same	Yes	
Rainy	Cold	High	Strong	Warm	Change	No
Sunny Warm	High	Strong	Cool	Change	Yes	

Target concept: EnjoySport?
How can we represent our hypothesis?
Conjunction of simple constraints on attributes: a specific value (Water=Warm) don't care (Water=?) always false (Water= \varnothing)
<Sunny ? ? Strong ? Same> Yes?
Slide adapted from T. Mitchell

Instances X

Hypotheses H

$x_{1}=<$ Sunny, Warm, High, Strong, Cool, Same $>$ $x_{2}=<$ Sunny, Warm, High, Light, Warm, Same $>$

$$
\begin{aligned}
& h_{1}=<\text { Sunny, ?, ?, Strong, ?, ?> } \\
& h_{2}=<\text { Sunny, ?, ?, ?, ?, ?> } \\
& h_{3}=\langle\text { Sunny, ?, ?, ?, Cool, ?> }
\end{aligned}
$$

Find-S Algorithm

(1) Initialize h to the most specific hypothesis in H
(2) For each positive training example x

For each attribute constraint a_{i} in h
(a) If the constraint a_{i} is satisfied by x do nothing
(a) Else
replace a_{i} in h by the next more general constraint that is satisfied by x
(1) Output hypothesis h

$h_{0}=<\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing>$
$x_{1}=$ <Sunny Warm Normal Strong Warm Same $>$, +
$h_{1}=<$ Sunny Warm Normal Strong Warm San $h_{2}=<$ Sunny Warm ? Strong Warm Same>
$h_{3}=<$ Sunny Warm ? Strong Warm Same $>$
$h_{4}=<$ Sunny Warm ? Strong ? ? >

Problems

1. No idea how well the concept has been learned
. do we need more training examples?
2. Cannot tell when training data is inconsistent
. negative examples must be good for something
3. Picks maximally specific h

- why is it better than any other one?
. it is not even guaranteed to be unique

Version Spaces

1. A hypothesis is consistent with a set of training examples D of target concept c iff $h(x)=c(x)$ for each training example $\langle x, c(x)>$ in D

$$
\text { Consistent }(h, D) \equiv(\forall\langle x, c(x)\rangle \in D) h(x)=c(x)
$$

1. The version space with respect to hypothesis space H and training examples $D, V S_{H D}$, is the subset of hypotheses from H that are consistent with all training examples in D

$$
V S_{H, D} \equiv\{h \in H \mid C o n s i s t e n t(h, D)\}
$$

List-Then-Eliminate Algorithm

(1) Initialize $V S=H$
(2) For each training example $\langle x, c(x)\rangle$
(3) remove from VS any hypothesis h for which
(4) Output VS

Inductive Leap

sky temp humid wind water forecst + <sunny warm normal strong cool change> + <sunny warm normal light warm same>

S: <sunny warm normal ? ? ?>
What's the justification for this leap?
Why should we believe we can classify the unseen examples <sunny warm normal strong warm same> and <sunny warm normal light cool change> ?

An UNBIASED Learner

Choose H that is capable of expressing every teachable concept (i.e. H is the power set of X)

For example, allow disjunctions, conjunctions and negations over attribute constraints, e.g. <sunny warm ? ? ? ?> V <? ? ? ? ? ᄀchange>

+ <sunny warm normal strong cool change> + <sunny warm normal light warm same>

What is S and G ?

Inductive Bias

Consider

- concept learning algorithm L
- instances X, target concept c
- training examples $D_{c}=\{\langle x, c(x)\rangle\}$
- let $L\left(x_{i}, D_{c}\right)$ denote the classification assigned to the instance x_{i} by L after training on data D_{c}.

Definition:

The inductive bias of L is any minimal set of assertions B such that for any target concept c and corresponding training examples D_{c}

$$
\left(\forall x_{i} \in X\right)\left[\left(B \wedge D_{c} \wedge x_{i}\right) \vdash L\left(x_{i}, D_{c}\right)\right]
$$

where $A \vdash B$ means A logically entails B

Inductive Bias

Equivalent deductive system

Learning problems

-The hypothesis takes a set of attribute values \mathbf{x} as input
-returns a "decision" $h(\mathbf{x})$
-the predicted (estimated) output value
-for the input \mathbf{x}.
-Discrete valued function \Rightarrow classification
-Continuous valued function \Rightarrow regression

Classification

Order into one out of several classes

$$
X^{D} \rightarrow C^{K}
$$

Input space Output (category) space

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{D}
\end{array}\right) \in X^{D} \quad \mathbf{c}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{K}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right) \in C^{K}
$$

Example: Robot color vision, cancer detection, etc.

Classify the Lego pieces into red, blue, and yellow. Classify white balls, black sideboard, and green carpet. Input $=$ pixel in image, output $=$ category

Regression

The "fixed regressor model"

$$
f(\mathbf{x})=g(\mathbf{x})+\varepsilon
$$

\mathbf{x}	Observed input
$f(\mathbf{x})$	Observed output
$g(\mathrm{x})$	True underlying function
\square	I.I.D noise process
	with zero mean

Example: Predict price for cotton futures

Input: Past history of closing prices, and trading volume

Output: Predicted closing price

The idealized inductive learning problem

Find appropriate hypothesis space \mathbf{H} and find $h(\mathbf{x})$ 且 with minimum "distance" to $f(\mathbf{x})$ ("error")

Our hypothesis space
The learning problem is realizable if $f(\mathbf{x}) \in \mathbf{H}$.

Hypothesis spaces (examples)

$\mathbf{H}_{1}=\{a+b x\} ; \mathbf{H}_{2}=\left\{a+b x+c x^{2}\right\} ; \mathbf{H}_{3}=\left\{a+b x+c x^{2}+d x^{3}\right\} ;$
Linear;
Quadratic;
Cubic;

The real inductive learning problem

Find appropriate hypothesis space \mathbf{H} and minimize the expected distance to $f(\mathbf{x})$ ("generalization error")

Data is never noise free and never available in infinite amounts, so we get variation in data and model. The generalization error is a function of both the training data and the hypothesis selection method.

An example of classification Algorithm:

Decision Tree

What?

- Decision Trees (DTs) are a non-parametric supervised learning method used for classification.

Why?

The key advantages of decision tree:

- Decision trees represent rules, which can be understood by humans and used in knowledge system such as database.
- Decision trees implicitly deploy feature selection or feature screening
- Decision trees need relatively little from users for data preparation
- Decision tree are not sensitive to nonlinear relationship between features

How it works?

- A simple example of decision tree:

How it works?

- A simple example of decision tree:

How it works?

- A simple example of decision tree:

So, that student is awesome

How it works?

- A simple example of decision tree:

How it works?

- A simple example of decision tree:

How it works?

- Generally, DT ask several question(s)

How it works?

- Generally, DT asks question(s)

- Then classifies the student w.r.t the given answers

How we can build DT from data?

Raw Date to DT?

We try to predict if Tom will play football given the new data (weather)

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

- Training data contains:
- 9 play and 5 not play

Raw Date to DT?

We try to predict if Tom will play football given the new data (weather)

Day	Outlook	Humidity	Wind	Play					
D1	Sunny	High	Weak	No	- Training data contains:				
D2	Sunny	High	Strong	No	- 9 play and 5 not play				
D3	Overcast	High	Weak	Yes					
D4	Rain	High	Weak	Yes	- New data:				
D5	Rain	Normal	Weak	Yes	D15	Rain	High	Weak	?
D6	Rain	Normal	Strong	No					
D7	Overcast	Normal	Strong	Yes					
D8	Sunny	High	Weak	No					
D9	Sunny	Normal	Weak	Yes					
D10	Rain	Normal	Weak	Yes					
D11	Sunny	Normal	Strong	Yes					
D12	Overcast	High	Strong	Yes					
D13	Overcast	Normal	Weak	Yes					
D14	Rain	High	Strong	No					
D15	Rain	High	Weak	?					

Raw Date to DT?

We try to predict if Tom will play football given the new data (weather)

Day	Outlook	Humidity	Wind	Play	
D1	Sunny	High	Weak	No	Training data contains:
D2	Sunny	High	Strong	No	- 9 play and 5 not play
D3	Overcast	High	Weak	Yes	
D4	Rain	High	Weak	Yes	- New data:
D5	Rain	Normal	Weak	Yes	D15 Rain High Weak
D6	Rain	Normal	Strong	No	
D7	Overcast	Normal	Strong	Yes	
D8	Sunny	High	Weak	No	football
D9	Sunny	Normal	Weak	Yes	- Attribute selection and split into
D10	Rain	Normal	Weak	Yes	subsets
D11	Sunny	Normal	Strong	Yes	yes or no)
D12	Overcast	High	Strong	Yes	- continue when they are not
D13	Overcast	Normal	Weak	Yes	
D14	Rain	High	Strong	No	
D15	Rain	High	Weak	?	

Raw Date to DT?

We try to predict if Tom will play football given the new data (weather)

9 play: yes / 5 notplay: no

Outlook

Day	Outlook	Humid	Wind
D1	Sunny	High	Weak
D2	Sunny	High	Strong
D8	Sunny	High	Weak
D9	Sunny	Normal	Weak
D11	Sunny	Normal	Strong

Pure subset

- New data: Day Outlook Humid Wind

- New data: Day Outlook Humid Wind
D15
Rain. High. Weak
?

- New data: Day Outlook Humid Wind
D15
Rain. High. Weak
?

- New data: Day Outlook Humid Wind

D15 Rain. High. Weak \longrightarrow Yes he will play

How we select the root node?

Which one of those attributes should be selected as the first attribute to split on?

Which one is better ?

Which one is better ?

- We should calculate the purity of the split:
- Being certain about yes and no after splitting
- Impure: 50\% chance $\rightarrow 3$ yes and 3 no
- Pure set: 100% sure -> 4 yes and 0 no

Which one is better ?

- We should calculate the purity of the split:
- Being certain about yes and no after splitting
- Impure: 50\% chance $\rightarrow 3$ yes and 3 no
- Pure set: 100% sure -> 4 yes and 0 no

Calculating impurity:

Which one is better ?

- There are different ways to calculate the impourity:
- Gini and Entropy
- General form of:

Gini $(E)=1-\sum_{j=1}^{C} p_{j}^{2} \quad$ Gini impurity: $1-(\mathrm{P}(\text { yes }))^{2}-(\mathrm{P}(\text { yes }))^{2}$
Entropy $=-\sum_{i} P\left(v_{i}\right) \ln \left[P\left(v_{i}\right)\right]$

Entropy is zero in a pure "yes" node (or pure "no" node).

Calculating impurity:

Which one is better ?

Entropy: $-P($ yes $) \ln [P($ yes $)]-P(n o) \ln [P(n o)]$

Calculating impurity:

Which one is better ?

Entropy: 0.80

Calculating impurity:

Which one is better ?

Entropy: 0.80
Entropy: ?

Calculating impurity:

Which one is better ?

Calculating impurity:

Which one is better ?

Entropy: 0.80
Entropy: 1

Calculating impurity:

Which one is better ?

- Since the sampels are different,
- Weighted average is needed to be calculated

Weighted average of Entropy for Wind:
$=\left(\frac{\text { total number in the first node }}{\text { total numbers in all nodes }}\right)$ Entropy $+\left(\frac{\text { total number in the second node }}{\text { total numbers in all nodes }}\right)$ Entropy

Calculating impurity:

Which one is better ?

- Since the sampels are different,
- Weighted average is needed to be calculated

Weighted average of Gini impurity for Wind:

$$
=\left(\frac{\text { total number in the first node }}{\text { total numbers in all nodes }}\right) \text { Entropy }+\left(\frac{\text { total number in the second node }}{\text { total numbers in all nodes }}\right) \text { Entropy }
$$

$=\left(\frac{8}{8+6}\right) 0.80+\left(\frac{6}{8+6}\right) 1$
$=0.856$

Calculating impurity:

Which one is better ?

Weighted average of Entropy for Wind:
$=0.856$

Calculating impurity:

Which one is better ?

Weighted average of Entropy for Wind:
$=0.856$
Weighted average of Entropy for Outlook:
$=0.684$

Calculating impurity:

Weighted average of Entropy for Wind:
$=0.856$

Weighted average of Entropy for Outlook:
$=0.684$

A simple quiz!?

Calculate the impurity (Entropy and Gini) for this feature and then compare with the other two impurity values?

?

A simple quiz!?

Calculate the impurity (Entropy and Gini) for this feature and then compare with the other two impurity values?

?

Decision Tree Weakness:

- The key weakness of decision tree:
- Decision tree is not a suitable algorithm for continues data
- Decision tree performs poorly with limited data and multiple classes
- Computationally expensive
- In terms of training the data, by splitting each node ..

How do we know it is correct?

How do we know that $h \square f$? (Hume's Problem of Induction)

Try h on a new (test) set of examples (ones not used during training)
...and assume the "principle of uniformity", i.e. the result we get on this test data should be indicative of results on future data. Causality is constant.

Cross-validation

Use a "validation set".

$E_{\text {generalisation }} \approx E_{\text {validation }}$

Split your data set into two parts, one for training your model and the other for validating your model.

K-fold Cross-Validation

More accurate than using only one validation set.

$$
E_{g e n} \approx\left\langle E_{v a l}\right\rangle=\frac{1}{K} \sum_{k=1}^{K} E_{v a l}(k)
$$

$E_{\mathrm{val}}(1)$

$E_{\mathrm{val}}(2)$

$E_{\mathrm{val}}(3)$

PAC

- Any hypothesis that is consistent with a sufficiently large set of training (and test) examples is unlikely to be seriously wrong; it is probably approximately correct (PAC).
-The error should be < epsilon

Learning curve for the decision tree algorithm on 100 randomly generated examples in the restaurant domain. The graph summarizes 20 trials.

The error

$\mathbf{X}=$ the set of all possible examples (instance space).
$D=$ the distribution of these examples.
$\mathbf{H}=$ the hypothesis space $(h \square \mathbf{H})$.
$N=$ the number of training data.

$$
\operatorname{error}(h)=P[h(\mathbf{x}) \neq f(\mathbf{x}) \mid \mathbf{x} \text { drawn from } D]
$$

Image adapted from F. Hoffmann @ KTH

Probability for bad hypothesis

Suppose we have a bad hypothesis h with $\operatorname{error}(h)>$ \square.

What is the probability that it is consistent with N samples?
-Probability for being inconsistent with one sample $=\operatorname{error}(h)>\square$.
-Probability for being consistent with one sample $=1-\operatorname{error}(h)<1-\square$.
-Probability for being consistent with N independently drawn samples $<(1-\square)^{N}$.

Probability for bad hypothesis

What is the probability that the set $\mathbf{H}_{\text {bad }}$ of bad hypotheses with error $(h)>\square$ contains a consistent hypothesis?

A measure of the number of bad models

$P(h$ consistent $\wedge \operatorname{error}(h)>\varepsilon) \leq\left|\mathbf{H}_{\text {bad }}\right|(1-\varepsilon)^{N} \leq|\mathbf{H}|(1-\varepsilon)^{N}$

Probability for bad hypothesis

What is the probability that the set $\mathbf{H}_{\text {bad }}$ of bad hypotheses with error $(h)>\square$ contains a consistent hypothesis?
$P(h$ consistent $\wedge \operatorname{error}(h)>\varepsilon) \leq\left|\mathbf{H}_{\text {bad }}\right|(1-\varepsilon)^{N} \leq|\mathbf{H}|(1-\varepsilon)^{N}$

If we want this to be less than some constant ${ }^{3}$, then

$$
|\mathbf{H}|(1-\varepsilon)^{N}<\delta \Rightarrow \ln |\mathbf{H}|+N \ln (1-\varepsilon)<\ln \delta
$$

Probability for bad hypothesis

What is the probability that the set $\mathbf{H}_{\text {bad }}$ of bad hypotheses with error $(h)>\square$ contains a consistent hypothesis?
$P(h$ consistent $\wedge \operatorname{error}(h)>\varepsilon) \leq\left|\mathbf{H}_{\text {bad }}\right|(1-\varepsilon)^{N} \leq|\mathbf{H}|(1-\varepsilon)^{N}$
If we want this to be less than some constant 0^{0}, then

$$
N>\frac{\ln (|\mathbf{H}|)-\ln (\delta)}{-\ln (1-\varepsilon)} \approx \frac{\ln (|\mathbf{H}|)-\ln (\delta)}{\mathcal{\varepsilon}}
$$

How to make learning work?

-Use simple hypotheses
-Always start with the simple ones first
-Constrain H with priors
-Do we know something about the domain?
-Do we have reasonable a priori beliefs on parameters?
-Use many observations
-Easy to say...
-Always report validation results

Summary

- In learning context we have Classification and Regression
- Classification tries to predict descrete data e.g., label
- Regression tries to predict continuse data e.g., quantity
- To build a hypotheis we should start from a simple
- Decision tree is a simple, but a powerful classifier
- For classification and regresssion problems
- To validate the algorithm we can use cross validation
- PAC is a theoretical framework and its goal is to build a hypotheis that has high prabobility and approximatly correct.

