
Artificial Intelligence

Bayesian networks
Chapter 14, AIMA



Inference

• Inference in the statistical setting means 
computing probabilities of different 
outcomes given the observed information 

• We need an efficient method for doing this 
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Conditional independence

We say that X and Y are conditionally 
independent if
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What's the relation between independence and conditional 
independence?



Naive Bayes: Combining evidence

Assume full conditional independence and 
express the full joint probability 
distribution as:
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Naive Bayes: Dentist example

toothache ¬toothache

catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

108.0),,( : valueTrue

108.02.0
2.0

)072.0108.0(
2.0

)012.0108.0(
),,(

)()|()|(
)()|,(

),,(

=

=´
+

´
+

»Þ

»
=

cavitycatchtoothache

cavitycatchtoothache
CavityCavityCatchCavityToothache

CavityCavityCatchToothache
CavityCatchToothache

P

P
PPP

PP
P



Naive Bayes: Dentist example

P(Catch,
Toothache,Cavity) toothache ¬toothache

catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

Full table has 23-1=7 independent numbers [O(2n)]

P(Catch|Cavity) catch ¬catch

cavity 0.9 0.1

¬cavity 0.2 0.8

P(Toothache|Cavity) toothache ¬toothache

cavity 0.6 0.4

¬cavity 0.1 0.9

P(Cavity)

cavity 0.2

¬cavity 0.8

2 independent numbers

2 independent numbers

1 independent number



Naive Bayes application: 
Learning to classify text

• Compute P(text | interesting) and 
P(text | uninteresting) using Naive Bayes

(and assuming that word position in text is unimportant)
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Where wi are the words occuring in this particular text.

• Estimate conditional probabilities 
P(wi | interesting) and P(wi | uninteresting)

• Use a dictionary with words (not too
frequent and not too infrequent), e.g. 
w1 = airplane, w2 = algorithm, ...



Naive Bayes application: 
Learning to classify text

• Then compute the probability that the text is 
interesting (or uninteresting) using Bayes’ theorem
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P(text) is just a normalization factor; it is not
necessary to compute it since we are only 
interested in knowing whether

P(interesting | text) > P(uninteresting | text)



Inference

• Inference in the statistical setting means 
computing probabilities of different 
outcomes given the observed information 

• We need an efficient method for doing this 
which is more widely applicable than the 
naïve Bayes model

)|( nInformatioOutcomeP



Bayesian networks

A Bayesian network is a directed graph in which 
each node is annotated with quantitative 
probability information:

1. The set of nodes of the network corresponds to 
a set of random variables {X1,X2,X3,...}

2. pairs of nodes can be connected by directed 
links defining a parent ® child relation

3. Each node Xi contains a conditional probability 
distribution P(Xi | Parents(Xi))

4. The graph is a directed acyclic graph (DAG)



The dentist network

Cavity

CatchToothache

Weather



The alarm network

Alarm

Burglary Earthquake

JohnCalls MaryCalls

Burglar alarm responds to 
both earthquakes and burglars.

Two neighbors: John and Mary,
who have promised to call you
when the alarm goes off.

John always calls when there’s
an alarm, and sometimes when
there’s not an alarm.

Mary sometimes misses the 
alarms (she likes loud music). 



The cancer network

From Breese and Coller 1997

Age Gender

SmokingToxics

Cancer

Serum
Calcium

Lung
Tumour

Genetic
Damage



The cancer network

From Breese and Coller 1997

Age Gender

SmokingToxics

Cancer

Serum
Calcium

Lung
Tumour

Genetic
Damage

P(A,G) = P(A)P(G)

P(C|S,T,A,G) = P(C|S,T)

P(SC,C,LT,GD) = P(SC|C)P(LT|C,GD)P(C) P(GD)

P(A,G,T,S,C,SC,LT,GD) = 
P(A)P(G)P(T|A)P(S|A,G)´
P(C|T,S)P(GD)P(SC|C)´

P(LT|C,GD)



Meaning of Bayesian network
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The general chain rule (always true):
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The Bayesian network chain rule:

The BN is a correct representation of the domain iff each node is 
conditionally independent of its predecessors, given its parents.



Bayes network node is a function

A B
¬a b

a∧b a∧¬b ¬a∧b ¬a∧¬b

Min 0.1 0.3 0.7 0.0

Max 1.5 1.1 1.9 0.9

C

P(C|¬a,b) = U[0.7,1.9]

0.7 1.9
P(C|A,B)



Bayes network node is a function

A B

C
A node in a Bayesian Network is a

conditional distribution function,
i.e. a function that has:

Can be any type of 
function from values

to distributions.

• Inputs = values of parent 
random variables (A&B)

• Output = distribution over
current random variable (C)



Example: The alarm network

Alarm

Burglary Earthquake

JohnCalls MaryCalls

P(B=b)
0.001

P(E=e)
0.002

A P(J=j)
a 0.90
¬a 0.05

A P(M=m)
a 0.70
¬a 0.01

B E P(A=a)
b e 0.95
b ¬e 0.94
¬b e 0.29
¬b ¬e 0.001

Note: Each number in 
the tables represents a
boolean distribution.

Hence, for every input,
there is a distribution
as an output.



Example: The alarm network

Alarm

Burglary Earthquake

JohnCalls MaryCalls

P(B=b)
0.001

P(E=e)
0.002

A P(J=j)
a 0.90
¬a 0.05

A P(M=m)
a 0.70
¬a 0.01

B E P(A=a)
b e 0.95
b ¬e 0.94
¬b e 0.29
¬b ¬e 0.001

00063.090.070.0001.0998.0999.0
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Probability distribution for
”no earthquake, no burglary,
but alarm, and both Mary and
John make the call”



The alarm network

Alarm

Burglary Earthquake

JohnCalls MaryCalls

The fully correct alarm 
network might look something 
like the figure.

The Bayesian network
assumes that some of the 
variables are independent
• or that the dependencies 
can be neglected since 
they are very weak

The correctness of the 
Bayesian network, of course, 
depends on the validity of 
these assumptions!

Alarm

Burglary Earthquake

JohnCalls MaryCalls

It is this sparse connection structure that makes the BN approach feasible:
~linear growth in complexity rather than exponential, in practice



How to construct a BN?

• Add nodes in causal order
– ”causal” determined from expertise

• Determine conditional independence using 
either (or all) of the following semantics:
– Blocking/d-separation rule
– Non-descendant rule
– Markov blanket rule
– Experience/your beliefs



Path blocking & d-separation

Intuitively, knowledge about Serum Calcium influences our belief 
about Cancer – if we don’t know the value of Cancer – which, in 
turn, influences our belief about Lung Tumour, etc.

However, if we are given the value of Cancer (i.e. C= true or false), 
then knowledge of Serum Calcium will not tell us anything about 
Lung Tumour that we don’t already know
– this is conditional independence at work!

We say that Cancer d-separates (direction-dependent separates) 
Serum Calcium and Lung Tumour.

Cancer

Serum
Calcium

Lung
Tumour

Genetic
Damage



Path blocking & d-separation
Two nodes Xi and Xj are conditionally independent given a set 
W = {X1,X2,X3,...} of nodes if for every undirected path in 
the BN between Xi and Xj there is some node Xk on the 
path having one of the following three properties:

1. Xk ∈ W, and both arcs on the path 
lead out of Xk.

2. Xk ∈ W, and one arc on the path 
leads into Xk and one arc leads 
out.

3. Neither Xk nor any descendant of 
Xk is in W, and both arcs on the 
path lead into Xk.

Xk blocks the path between Xi and 
Xj

Xi

Xj

Xk1

Xk2

Xk3

W

)|()|()|,( WW=W jiji XPXPXXP

Xk1

Xk2

Xk3

Xi and Xj are d-separated if all paths betweeen them are blocked



Some definitions of BN
(from Wikipedia)

1. X is a Bayesian network with respect to 
G if its joint probability density function 
can be written as a product of the 
individual density functions, conditional 
on their parent variables:

X = {X1, X2, ..., XN} is a set of random variables
G = (V,E) is a directed acyclic graph (DAG) of vertices (V) and edges (E)
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Some definitions of BN
(from Wikipedia)

1. X is a Bayesian network with respect to 
G if it satisfies the local Markov property: 
each variable is conditionally independent 
of its non-descendants given its parent 
variables:

X = {X1, X2, ..., XN} is a set of random variables
G = (V,E) is a directed acyclic graph (DAG) of vertices (V) and edges (E)

))(|())(|( 1 iii XparentsxPXsdescentant-nonxP =
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Non-descendants

A node is conditionally 
independent of its 
non-descendants (Zij), 
given its parents.
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Some definitions of BN
(from Wikipedia)

1. X is a Bayesian network with respect to 
G if every node is conditionally 
independent of all other nodes in the 
network, given its Markov blanket. 

The Markov blanket of a node is its 
parents, children and children's parents. 

X = {X1, X2, ..., XN} is a set of random variables
G = (V,E) is a directed acyclic graph (DAG) of vertices (V) and edges (E)

))(|()nodes all |( iii Xblanket MarkovxPxP =



Markov blanket

A node is conditionally 
independent of all 
other nodes in the 
network, given its 
parents, children, and 
children’s parents

These constitute the 
node’s Markov 
blanket.
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Some definitions of BN
(from Wikipedia)

1. X is a Bayesian network with respect to 
G if, for any two nodes i, j:

X = {X1, X2, ..., XN} is a set of random variables
G = (V,E) is a directed acyclic graph (DAG) of vertices (V) and edges (E)
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The Markov blanket of node i is the minimal set of nodes that 
d-separates node i from all other nodes.

The d-separating set(i,j) is the set of nodes that d-separate node i and j.



Causal networks

• Bayesian networks are usually used to represent 
causal relationships. This is, however, not strictly 
necessary: a directed edge from node i to node j
does not require that Xi is causally dependent on 
Xj. 
– This is demonstrated by the fact that Bayesian networks 

on the two graphs:

are equivalent. They impose the same conditional 
independence requirements.

A B CA B C

A causal network is a Bayesian network with an explicit 
requirement that the relationships be causal.



Causal networks

A B CA B C
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The equivalence is proved with Bayes theorem...

*...*.....?



Exercise 14.12* (a) in AIMA
• Two astronomers in different parts of the world 

make measurements M1 and M2 of the number of 
stars N in some small region of the sky, using 
their telescopes. Normally there is a small 
possibility e of error up to one star in each 
direction. Each telescope can also (with a much 
smaller probability f) be badly out of focus 
(events F1 and F2) in which case the scientist will 
undercount by three or more stars (or, if N is less 
than 3, fail to detect any stars at all). Consider 
the three networks in Figure 14.22*.
– (a) Which of these Bayesian networks are correct (but 

not necessarily efficient) representations of the 
preceeding information?

*In the 2:nd edition is this exercise 14.3 and the figure is 14.19.



Exercise 14.12 (a) in AIMA
• Two astronomers in different parts of the world make measurements M1

and M2 of the number of stars N in some small region of the sky, using 
their telescopes. Normally there is a small possibility e of error up to one 
star in each direction. Each telescope can also (with a much smaller 
probability f) be badly out of focus (events F1 and F2) in which case the 
scientist will undercount by three or more stars (or, if N is less than 3, fail 
to detect any stars at all). Consider the three networks in Figure 14.22.
– (a) Which of these Bayesian networks are correct (but not necessarily efficient) 

representations of the preceeding information?

N
M1 M2

F1 F2



Exercise 14.12 (a) in AIMA

N
M1 M2

F1 F2



Exercise 14.12 (a) in AIMA
• Two astronomers in different parts of the world make measurements M1

and M2 of the number of stars N in some small region of the sky, using 
their telescopes. Normally there is a small possibility e of error up to one 
star in each direction. Each telescope can also (with a much smaller 
probability f) be badly out of focus (events F1 and F2) in which case the 
scientist will undercount by three or more stars (or, if N is less than 3, fail 
to detect any stars at all). Consider the three networks in Figure 14.22.
– (a) Which of these Bayesian networks are correct (but not necessarily efficient) 

representations of the preceeding information?



Exercise 14.12 (a) in AIMA
• (i) must be incorrect – N is d-separated 

from F1 (or F2), relative to {M1} (or {M2}) 
i.e. knowing the focus states F would not 
affect N if we know M:

This cannot be correct!

wrong



Exercise 14.12 (a) in AIMA
• Two astronomers in different parts of the world make measurements M1

and M2 of the number of stars N in some small region of the sky, using 
their telescopes. Normally there is a small possibility e of error up to one 
star in each direction. Each telescope can also (with a much smaller 
probability f) be badly out of focus (events F1 and F2) in which case the 
scientist will undercount by three or more stars (or, if N is less than 3, fail 
to detect any stars at all). Consider the three networks in Figure 14.22.
– (a) Which of these Bayesian networks are correct (but not necessarily efficient) 

representations of the preceeding information?

wrong



Exercise 14.12 (a) in AIMA

• (ii) is correct – it describes the causal 
relationships. It is a causal network.

wrong

ok



Exercise 14.12 (a) in AIMA
• Two astronomers in different parts of the world make measurements M1

and M2 of the number of stars N in some small region of the sky, using 
their telescopes. Normally there is a small possibility e of error up to one 
star in each direction. Each telescope can also (with a much smaller 
probability f) be badly out of focus (events F1 and F2) in which case the 
scientist will undercount by three or more stars (or, if N is less than 3, fail 
to detect any stars at all). Consider the three networks in Figure 14.22.
– (a) Which of these Bayesian networks are correct (but not necessarily efficient) 

representations of the preceeding information?

wrong

ok



Exercise 14.12 (a) in AIMA

• (iii) is also ok – a fully connected graph 
would be correct (but not efficient). (iii) 
has all connections except Mi–Fj and Fi–Fj. 
(iii) is not causal and not efficient.

wrong

ok

ok – but not good



Exercise 14.12 (a) in AIMA

wrong

ok

ok – but not good
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(ii) says:
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(iii) says:



Exercise 14.12 (a) in AIMA
),2|2(),1|1()()2()1()2,1,,2,1( NFMPNFMPNPFPFPMMNFFP =

(ii) says:
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Exercise 14.12 (a) in AIMA
),2|2(),1|1()()2()1()2,1,,2,1( NFMPNFMPNPFPFPMMNFFP =

(ii) says:

)2,|2()2,1|()1|2()1,|1()1()2,1,,2,1( MNFPMMNPMMPMNFPMPMMNFFP =
(iii) says:
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The full correct expression (another version) is:
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This is not as efficient as (ii). This requires more conditional
probabilities.



Exercise 14.12 (a) in AIMA

wrong

ok

ok – but not good

)2,1|()2|2()1|1()2()1()2,1,,2,1( MMNPFMPFMPFPFPMMNFFP =
(i) says:



Exercise 14.12 (a) in AIMA
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Exercise 14.12 (a) in AIMA
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The full correct expression (a third version) is:
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This is an unreasonable approximation. The rest is ok.



Efficient representation of PDs

• Boolean ® Boolean
• Boolean ® Discrete
• Boolean ® Continuous
• Discrete ® Boolean
• Discrete ® Discrete
• Discrete ® Continuous
• Continuous ® Boolean
• Continuous ® Discrete
• Continuous ® Continuous

C

A

B

P(C|a,b) ?



Noisy-OR example
Boolean → Boolean

P(E|C1,C2,C3)

C1 0 1 0 0 1 1 0 1

C2 0 0 1 0 1 0 1 1

C3 0 0 0 1 0 1 1 1

P(E=0) 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001

P(E=1) 0 0.9 0.9 0.9 0.99 0.99 0.99 0.999

Example from L.E. Sucar

The effect (E) is off (false) when none of the causes are true. The 
probability for the effect increases with the number of true causes.

)(#10)0( TrueEP -== (for this example)



Noisy-OR general case
Boolean → Boolean
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Example on previous slide used
qi = 0.1 for all i. q1

P(E|C1,...)

C1 C2 Cn

q2 qn
PROD

Image adapted from Laskey & Mahoney 1999

Needs only n parameters, 
not 2n parameters.



Noisy-OR example (II)

• Fever is True if and only if Cold, Flu or 
Malaria is True.
• each cause has an independent chance of 

causing the effect.
– all possible causes are listed
– inhibitors are independent

Cold Flu Malaria

q1 q2 q3

Fever



Noisy-OR example (II)

Cold Flu Malaria

q1 = 0.6 q2 = 0.2 q3 = 0.1

Fever

• P(Fever | Cold) = 0.4 ⇒ q1 = 0.6
• P(Fever | Flu) = 0.8 ⇒ q2 = 0.2
• P(Fever | Malaria) = 0.9 ⇒ q3 = 0.1



Noisy-OR example (II)

Cold Flu Malaria

q1 = 0.6 q2 = 0.2 q3 = 0.1

Fever

• P(Fever | Cold) = 0.4 ⇒ q1 = 0.6
• P(Fever | Flu) = 0.8 ⇒ q2 = 0.2
• P(Fever | Malaria) = 0.9 ⇒ q3 = 0.1
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MalariaFluColdFeverP
MalariaFluColdFeverP



Noisy-OR example (II)

Cold Flu Malaria

q1 = 0.6 q2 = 0.2 q3 = 0.1

Fever

• P(Fever | Cold) = 0.4 ⇒ q1 = 0.6
• P(Fever | Flu) = 0.8 ⇒ q2 = 0.2
• P(Fever | Malaria) = 0.9 ⇒ q3 = 0.1
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1.01.02.06.0),,|( 100

=-=¬¬
=´´=¬¬¬

MalariaFluColdFeverP
MalariaFluColdFeverP



Noisy-OR example (II)

Cold Flu Malaria

q1 = 0.6 q2 = 0.2 q3 = 0.1

Fever

• P(Fever | Cold) = 0.4 ⇒ q1 = 0.6
• P(Fever | Flu) = 0.8 ⇒ q2 = 0.2
• P(Fever | Malaria) = 0.9 ⇒ q3 = 0.1
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Parametric probability densities
Boolean/Discr./Continuous → Continuous

Use parametric probability densities, e.g., 
the normal distribution
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Normal Distribution



Probit & Logit
Discrete → Boolean

If the input is continuous but output is 
boolean, use probit or logit
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The cancer network

Age: {1-10, 11-20,...}
Gender: {M, F}
Toxics: {Low, Medium, High}
Smoking: {No, Light, Heavy}
Cancer: {No, Benign, Malignant}
Serum Calcium: Level
Lung Tumour: {Yes, No}

Age Gender

SmokingToxics

Cancer

Serum
Calcium

Lung
Tumour

Discrete Discrete/boolean

Discrete Discrete

Discrete

Continuous Discrete/boolean



Inference in BN

Inference means computing P(X|e), where X is 
a query (variable) and e is a set of evidence 
variables (for which we know the values).

Examples:

P(Burglary | john_calls, mary_calls)
P(Cancer | age, gender, smoking, serum_calcium)
P(Cavity | toothache, catch)



Exact inference in BN

”Doable” for boolean variables: Look up 
entries in conditional probability tables 
(CPTs).
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Example: The alarm network

Alarm

Burglary Earthquake

JohnCalls MaryCalls

P(B=b)
0.001

P(E=e)
0.002

A P(J=j)
a 0.90
¬a 0.05

A P(M=m)
a 0.70
¬a 0.01

B E P(A=a)
b e 0.95
b ¬e 0.94
¬b e 0.29
¬b ¬e 0.001
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Evidence variables = {J,M}
Query variable = B

What is the probability for a burglary if both John and Mary call?



Example: The alarm network

Alarm

Burglary Earthquake

JohnCalls MaryCalls

P(B=b)
0.001

P(E=e)
0.002

A P(J=j)
a 0.90
¬a 0.05

A P(M=m)
a 0.70
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Example: The alarm network

Alarm
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Example: The alarm network

Alarm

Burglary Earthquake
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Example: The alarm network

Alarm

Burglary Earthquake

JohnCalls MaryCalls
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What is the probability for a burglary if both John and Mary call?
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Use depth-first search

A lot of unneccesary repeated computation...



Complexity of exact inference

• By eliminating repeated calculation & 
uninteresting paths we can speed up the 
inference a lot.
• Linear time complexity for singly 

connected networks (polytrees).
• Exponential for multiply connected 

networks.
– Clustering can improve this



Approximate inference in BN

• Exact inference is intractable in large 
multiply connected BNs ⇒
use approximate inference: 
Monte Carlo methods (random sampling).
– Direct sampling
– Rejection sampling
– Likelihood weighting
– Markov chain Monte Carlo



Markov chain Monte Carlo

1. Fix the evidence variables (E1, E2, ...) at their 
given values.

2. Initialize the network with values for all other 
variables, including the query variable.

3. Repeat the following many, many, many times:
a. Pick a non-evidence variable at random (query Xi or 

hidden Yj)
b. Select a new value for this variable, conditioned on the 

current values in the variable’s Markov blanket.

Monitor the values of the query variables.


