Artificial Intelligence

Bayesian networks
Chapter 14, AIMA

Inference

- Inference in the statistical setting means computing probabilities of different outcomes given the observed information

$$
\mathbf{P}(\text { Outcome } \mid \text { Information })
$$

- We need an efficient method for doing this

Conditional independence

We say that X and Y are conditionally independent if

$$
\mathbf{P}(X, Y \mid Z)=\mathbf{P}(X \mid Z) \mathbf{P}(Y \mid Z)
$$

What's the relation between independence and conditional independence?

Naive Bayes: Combining evidence

Assume full conditional independence and express the full joint probability distribution as:
$\mathbf{P}\left(\right.$ Effect $_{1}$, Effect $_{2}, \ldots$, Effect $_{n}$, Cause $)=$
$\mathbf{P}\left(\right.$ Effect $_{1}$, Effect $_{2}, \ldots$, Effect $_{n} \mid$ Cause $) \mathbf{P}($ Cause $)=$
$\mathbf{P}\left(\right.$ Effect $_{1} \mid$ Cause $) \cdots \mathbf{P}\left(\right.$ Effect $_{n} \mid$ Cause $) \mathbf{P}($ cause $)=$
$\left[\prod_{i=1}^{n} \mathbf{P}\left(\right.\right.$ Effect $_{i} \mid$ Cause $\left.)\right] \mathbf{P}($ Cause $)$

Naive Bayes: Dentist example

$\mathbf{P}($ Toothache, Catch, Cavity $)=$
$\mathbf{P}($ Toothache, Catch \mid Cavity $) \mathbf{P}($ Cavity $) \approx$
$\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$\Rightarrow \mathbf{P}($ toothache, catch, cavity $) \approx$
$\frac{(0.108+0.012)}{0.2} \times \frac{(0.108+0.072)}{0.2} \times 0.2=0.108$
True value: $\mathbf{P}($ toothache, catch, cavity $)=0.108$

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	0.108	0.012	0.072	0.008
\neg cavity	0.016	0.064	0.144	0.576

Naive Bayes: Dentist example

$P($ Catch \mid Cavity $)$	catch	\neg catch
cavity	0.9	0.1
\neg cavity	0.2	0.8

2 independent numbers

$P($ Toothache\|Cavity $)$	toothache	\neg toothache
cavity	0.6	0.4
حcavity	0.1	0.9

$P($ Catch, Toothache,Cavity)	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	0.108	0.012	0.072	0.008
\neg cavity	0.016	0.064	0.144	0.576

Full table has $2^{3-1}=7$ independent numbers $\left[\mathrm{O}\left(2^{\mathrm{n}}\right)\right.$]

Naive Bayes application: Learning to classify text

- Use a dictionary with words (not too frequent and not too infrequent), e.g. $w_{1}=$ airplane,$w_{2}=$ algorithm, \ldots
- Estimate conditional probabilities $P\left(w_{i} \mid\right.$ interesting $)$ and $P\left(w_{i} \mid\right.$ uninteresting $)$

- Compute P(text | interesting) and P(text | uninteresting) using Naive Bayes
(and assuming that word position in text is unimportant)

$$
P(\text { text } \mid \text { interesting }) \approx \prod_{i} P\left(w_{i} \mid \text { interesting }\right)
$$

Where w_{i} are the words occuring in this particular text.

Naive Bayes application: Learning to classify text

- Then compute the probability that the text is interesting (or uninteresting) using Bayes' theorem

$$
P(\text { interesting } \mid \text { text })=\frac{P(\text { interesting }) P(\text { text } \mid \text { interesting })}{P(\text { text })}
$$

P (text) is just a normalization factor; it is not necessary to compute it since we are only interested in knowing whether
$P($ interesting \mid text $)>P($ uninteresting \mid text $)$

Inference

- Inference in the statistical setting means computing probabilities of different outcomes given the observed information

$\mathbf{P}($ Outcome \mid Information $)$

- We need an efficient method for doing this which is more widely applicable than the naïve Bayes model

Bayesian networks

A Bayesian network is a directed graph in which each node is annotated with quantitative probability information:

1. The set of nodes of the network corresponds to a set of random variables $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots\right\}$
2. pairs of nodes can be connected by directed links defining a parent \rightarrow child relation
3. Each node X_{i} contains a conditional probability distribution $\boldsymbol{P}\left(\mathrm{X}_{\mathrm{i}} \mid\right.$ Parents $\left.\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
4. The graph is a directed acyclic graph (DAG)

The dentist network

The alarm network

Burglar alarm responds to both earthquakes and burglars.

Two neighbors: John and Mary, who have promised to call you when the alarm goes off.

John always calls when there's an alarm, and sometimes when there's not an alarm.

Mary sometimes misses the alarms (she likes loud music).

The cancer network

The cancer network

Meaning of Bayesian network

The general chain rule (always true):

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, x_{3}, \ldots, x_{n}\right) P\left(x_{2}, x_{3}, \ldots, x_{n}\right)= \\
& P\left(x_{1} \mid x_{2}, x_{3}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, x_{4}, \ldots, x_{n}\right) P\left(x_{3}, x_{4}, \ldots, x_{n}\right)=\cdots \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

The Bayesian network chain rule:

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

The $B N$ is a correct representation of the domain iff each node is conditionally independent of its predecessors, given its parents.

Bayes network node is a function

Bayes network node is a function

Example: The alarm network

Example: The alarm network

The alarm network

The fully correct alarm network might look something like the figure.

The Bayesian network assumes that some of the variables are independent

- or that the dependencies can be neglected since they are very weak

The correctness of the Bayesian network, of course, depends on the validity of these assumptions!

It is this sparse connection structure that makes the BN approach feasible: ~linear growth in complexity rather than exponential, in practice

How to construct a BN?

- Add nodes in causal order
- "causal" determined from expertise
- Determine conditional independence using either (or all) of the following semantics:
- Blocking/d-separation rule
- Non-descendant rule
- Markov blanket rule
- Experience/your beliefs

Path blocking \& d-separation

Intuitively, knowledge about Serum Calcium influences our belief about Cancer - if we don't know the value of Cancer - which, in turn, influences our belief about Lung Tumour, etc.

However, if we are given the value of Cancer (i.e. $C=$ true or false), then knowledge of Serum Calcium will not tell us anything about Lung Tumour that we don't already know

- this is conditional independence at work!

We say that Cancer d-separates (direction-dependent separates) Serum Calcium and Lung Tumour.

Path blocking \& d-separation

X_{i} and X_{j} are d-separated if all paths betweeen them are blocked Two nodes X_{i} and X_{j} are conditionally independent given a set $\Omega=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots\right\}$ of nodes if for every undirected path in the $B N$ between X_{i} and X_{j} there is some node X_{k} on the path having one of the following three properties:

1. $\mathrm{X}_{\mathrm{k}} \in \Omega$, and both arcs on the path lead out of X_{k}.
2. $\mathrm{X}_{\mathrm{k}} \in \Omega$, and one arc on the path leads into X_{k} and one arc leads out.
3. Neither X_{k} nor any descendant of X_{k} is in Ω, and both arcs on the path lead into X_{k}.
X_{k} blocks the path between X_{i} and

$P\left(X_{i}, X_{j} \mid \Omega\right)=P\left(X_{i} \mid \Omega\right) P\left(X_{j} \mid \Omega\right)$ X_{j}

Some definitions of $B N$ (from Wikipedia)

1. \boldsymbol{X} is a Bayesian network with respect to \boldsymbol{G} if its joint probability density function can be written as a product of the individual density functions, conditional on their parent variables:

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

$\boldsymbol{X}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{N}\right\}$ is a set of random variables
$\boldsymbol{G}=(V, E)$ is a directed acyclic graph (DAG) of vertices (V) and edges (E)

Some definitions of $B N$ (from Wikipedia)

1. \boldsymbol{X} is a Bayesian network with respect to G if it satisfies the local Markov property: each variable is conditionally independent of its non-descendants given its parent variables:

$$
P\left(x_{1} \mid \text { non }- \text { descentants }\left(X_{i}\right)\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Note: \quad parents $\left(X_{i}\right) \subseteq$ non-descentants $\left(X_{i}\right)$
$\boldsymbol{X}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{N}\right\}$ is a set of random variables
$\boldsymbol{G}=(V, E)$ is a directed acyclic graph (DAG) of vertices (V) and edges (E)

Non-descendants

A node is conditionally independent of its non-descendants (Z_{ij}), given its parents.

$$
\begin{aligned}
& P\left(X, Z_{1 j}, \ldots, Z_{n j} \mid U_{1}, \ldots, U_{m}\right)= \\
& P\left(X \mid U_{1}, \ldots, U_{m}\right) P\left(Z_{1 j}, \ldots, Z_{n j} \mid U_{1}, \ldots, U_{m}\right) \\
& P\left(X \mid Z_{1 j}, \ldots, Z_{n j}, U_{1}, \ldots, U_{m}\right)= \\
& P\left(X \mid U_{1}, \ldots, U_{m}\right)
\end{aligned}
$$

Some definitions of $B N$ (from Wikipedia)

1. \boldsymbol{X} is a Bayesian network with respect to \boldsymbol{G} if every node is conditionally independent of all other nodes in the network, given its Markov blanket.

The Markov blanket of a node is its parents, children and children's parents.

$$
P\left(x_{i} \mid \operatorname{all} \text { nodes }\right)=P\left(x_{i} \mid \operatorname{Markov} \operatorname{blanket}\left(X_{i}\right)\right)
$$

$\boldsymbol{X}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{N}\right\}$ is a set of random variables
$\boldsymbol{G}=(V, E)$ is a directed acyclic graph (DAG) of vertices (V) and edges (E)

Markov blanket

A node is conditionally independent of all other nodes in the network, given its parents, children, and children's parents
These constitute the node's Markov blanket.

$$
\begin{aligned}
& P\left(X \mid X_{1}, \ldots, X_{k}, U_{1}, \ldots, U_{m}, Z_{1 j}, \ldots, Z_{n j}, Y_{1}, \ldots, Y_{n}\right)= \\
& P\left(X \mid U_{1}, \ldots, U_{m}, Z_{1 j}, \ldots, Z_{n j}, Y_{1}, \ldots, Y_{n}\right)
\end{aligned}
$$

Some definitions of $B N$ (from Wikipedia)

1. \boldsymbol{X} is a Bayesian network with respect to G if, for any two nodes i, j :

$$
\begin{aligned}
& P\left(x_{i}, x_{j} \mid X_{1}, X_{2}, \ldots, X_{N}\right)= \\
& P\left(x_{i} \mid d \text {-separating set }(i, j)\right) P\left(x_{j} \mid d \text {-separating set }(i, j)\right)
\end{aligned}
$$

The d-separating set (i, j) is the set of nodes that d-separate node i and j.
The Markov blanket of node i is the minimal set of nodes that d-separates node i from all other nodes.
$\boldsymbol{X}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{N}\right\}$ is a set of random variables
$\boldsymbol{G}=(V, E)$ is a directed acyclic graph (DAG) of vertices (V) and edges (E)

Causal networks

- Bayesian networks are usually used to represent causal relationships. This is, however, not strictly necessary: a directed edge from node i to node j does not require that X_{i} is causally dependent on X_{j}.
- This is demonstrated by the fact that Bayesian networks on the two graphs:

are equivalent. They impose the same conditional independence requirements.
A causal network is a Bayesian network with an explicit requirement that the relationships be causal.

Causal networks

$$
\begin{aligned}
& P(A, B, C)=P(A \mid B) P(B \mid C) P(C) \\
& =P(A \mid B) * \ldots . . ? \quad * \ldots
\end{aligned}
$$

The equivalence is proved with Bayes theorem...

Exercise 14.12* (a) in AIMA

- Two astronomers in different parts of the world make measurements M_{1} and M_{2} of the number of stars N in some small region of the sky, using their telescopes. Normally there is a small possibility e of error up to one star in each direction. Each telescope can also (with a much smaller probability f) be badly out of focus (events F_{1} and F_{2}) in which case the scientist will undercount by three or more stars (or, if N is less than 3, fail to detect any stars at all). Consider the three networks in Figure 14.22*.
- (a) Which of these Bayesian networks are correct (but not necessarily efficient) representations of the preceeding information?
*In the $2: n d$ edition is this exercise 14.3 and the figure is 14.19.

Exercise 14.12 (a) in AIMA

- Two astronomers in different parts of the world make measurements M_{1} and M_{2} of the number of stars N in some small region of the sky, using their telescopes. Normally there is a small possibility e of error up to one star in each direction. Each telescope can also (with a much smaller probability f) be badly out of focus (events F_{1} and F_{2}) in which case the scientist will undercount by three or more stars (or, if N is less than 3, fail to detect any stars at all). Consider the three networks in Figure 14.22.
- (a) Which of these Bayesian networks are correct (but not necessarily efficient) representations of the preceeding information?

N
F_{2}

Exercise 14.12 (a) in AIMA

- Two astronomers in different parts of the world make measurements M_{1} and M_{2} of the number of stars N in some small region of the sky, using their telescopes. Normally there is a small possibility e of error up to one star in each direction. Each telescope can also (with a much smaller probability f) be badly out of focus (events F_{1} and F_{2}) in which case the scientist will undercount by three or more stars (or, if N is less than 3, fail to detect any stars at all). Consider the three networks in Figure 14.22.
- (a) Which of these Bayesian networks are correct (but not necessarily efficient) representations of the preceeding information?

(i)

(ii)

(iii)

Exercise 14.12 (a) in AIMA

- (i) must be incorrect - N is d-separated from F_{1} (or F_{2}), relative to $\left\{\mathrm{M}_{1}\right\}$ (or $\left\{\mathrm{M}_{2}\right\}$) i.e. knowing the focus states F would not affect N if we know M :

This cannot be correct!

(i)

(ii)

(iii)

Exercise 14.12 (a) in AIMA

- Two astronomers in different parts of the world make measurements M_{1} and M_{2} of the number of stars N in some small region of the sky, using their telescopes. Normally there is a small possibility e of error up to one star in each direction. Each telescope can also (with a much smaller probability f) be badly out of focus (events F_{1} and F_{2}) in which case the scientist will undercount by three or more stars (or, if N is less than 3, fail to detect any stars at all). Consider the three networks in Figure 14.22.
- (a) Which of these Bayesian networks are correct (but not necessarily efficient) representations of the preceeding information?

(i)

(ii)

(iii)

Exercise 14.12 (a) in AIMA

- (ii) is correct - it describes the causal relationships. It is a causal network.

(i)

(ii)

(iii)

Exercise 14.12 (a) in AIMA

- Two astronomers in different parts of the world make measurements M_{1} and M_{2} of the number of stars N in some small region of the sky, using their telescopes. Normally there is a small possibility e of error up to one star in each direction. Each telescope can also (with a much smaller probability f) be badly out of focus (events F_{1} and F_{2}) in which case the scientist will undercount by three or more stars (or, if N is less than 3, fail to detect any stars at all). Consider the three networks in Figure 14.22.
- (a) Which of these Bayesian networks are correct (but not necessarily efficient) representations of the preceeding information?

(i)

(ii)

(iii)

Exercise 14.12 (a) in AIMA

- (iii) is also ok - a fully connected graph would be correct (but not efficient). (iii) has all connections except $\mathrm{M}_{\mathrm{i}}-\mathrm{F}_{\mathrm{j}}$ and $\mathrm{F}_{\mathrm{i}}-\mathrm{F}_{\mathrm{j}}$.
(iii) is not causal and not efficient.

(i)

(ii)

(iii)
ok - but not good

Exercise 14.12 (a) in AIMA

(ii) says:

$$
P(F 1, F 2, N, M 1, M 2)=P(F 1) P(F 2) P(N) P(M 1 \mid F 1, N) P(M 2 \mid F 2, N)
$$

(iii) says:
$P(F 1, F 2, N, M 1, M 2)=P(M 1) P(F 1 \mid N, M 1) P(M 2 \mid M 1) P(N \mid M 1, M 2) P(F 2 \mid N, M 2)$

Exercise 14.12 (a) in AIMA

(ii) says:

$$
P(F 1, F 2, N, M 1, M 2)=P(F 1) P(F 2) P(N) P(M 1 \mid F 1, N) P(M 2 \mid F 2, N)
$$

The full correct expression (one version) is: $P(F 1, F 2, N, M 1, M 2)=P(M 1 \mid F 1, F 2, N, M 2) P(F 1, F 2, N, M 2)=$ $P(M 1 \mid F 1, F 2, N, M 2) P(M 2 \mid F 1, F 2, N) P(F 1, F 2, N)=$ $P(M 1 \mid F 1, F 2, N, M 2) P(M 2 \mid F 1, F 2, N) P(F 1 \mid F 2, N) P(F 2, N)=$ $\underbrace{P(M 1 \mid F 1, F 2, N, M 2)}_{\approx P(M 1 \mid F 1, N)} \underbrace{P(M 2 \mid F 1, F 2, N)} \underbrace{P(F 1 \mid F 2, N)} \underbrace{P(F 2 \mid N)} P(N)$

Exercise 14.12 (a) in AIMA

This is not as efficient as (ii). This requires more conditional probabilities.
(iii) says:
$P(F 1, F 2, N, M 1, M 2)=P(M 1) P(F 1 \mid N, M 1) P(M 2 \mid M 1) P(N \mid M 1, M 2) P(F 2 \mid N, M 2)$

The full correct expression (another version) is:
$P(F 1, F 2, N, M 1, M 2)=P(F 1 \mid F 2, N, M 1, M 2) P(F 2, N, M 1, M 2)=$ $P(F 1 \mid F 2, N, M 1, M 2) P(F 2 \mid N, M 1, M 2) P(N, M 1, M 2)=$ $P(F 1 \mid F 2, N, M 1, M 2) P(F 2 \mid N, M 1, M 2) P(N \mid M 1, M 2) P(M 1, M 2)=$ $\underbrace{P(F 1 \mid F 2, N, M 1, M 2)}_{\approx P(F 1 \mid N, M 1)} \underbrace{P(F 2 \mid N, M 1, M 2)}_{\text {ol }} P(N \mid M 1, M 2) P(M 2 \mid M 1) P(M 1)$

Exercise 14.12 (a) in AIMA

(i) says:
$P(F 1, F 2, N, M 1, M 2)=P(F 1) P(F 2) P(M 1 \mid F 1) P(M 2 \mid F 2) P(N \mid M 1, M 2)$

(iii)
ok - but not good

Exercise 14.12 (a) in AIMA

(i) says:

$$
P(F 1, F 2, N, M 1, M 2)=P(F 1) P(F 2) P(M 1 \mid F 1) P(M 2 \mid F 2) P(N \mid M 1, M 2)
$$

The full correct expression (a third version) is:
$P(F 1, F 2, N, M 1, M 2)=P(N \mid M 1, M 2, F 1, F 2) P(M 1, M 2, F 1, F 2)=$ $P(N \mid M 1, M 2, F 1, F 2) P(M 1 \mid M 2, F 1, F 2) P(M 2, F 1, F 2)=$ $P(N \mid M 1, M 2, F 1, F 2) P(M 1 \mid M 2, F 1, F 2) P(M 2 \mid F 1, F 2) P(F 1, F 2)=$ $\underbrace{P(N \mid M 1, M 2, F 1, F 2)}_{\approx P(N \mid M 1, M 2)} \underbrace{P(M 1 \mid M 2, F 1, F 2)}_{\approx P(M 1 \mid F 1)} \underbrace{P(M 2 \mid F 1, F 2)}_{P(M 2 \mid F 2)} \underbrace{P(F 1 \mid F 2)}_{\approx P(F 1)} P(F 2)$

Exercise 14.12 (a) in AIMA

(i) says:

$$
P(F 1, F 2, N, M 1, M 2)=P(F 1) P(F 2) P(M 1 \mid F 1) P(M 2 \mid F 2) P(N \mid M 1, M 2)
$$

This is an unreasonable approximation. The rest is ok.

The full correct expression (a third version) is:
$P(F 1, F 2, N, M 1, M 2)=P(N \mid M 1, M 2, F 1, F 2) P(M 1, M 2, F 1, F 2)=$ $P(N \mid M 1, M 2, F 1, F 2) P(M 1 \mid M 2, F 1, F 2) P(M 2, F 1, F 2)=$ $P(N \mid M 1, M 2, F 1, F 2) P(M 1 \mid M 2, F 1, F 2) P(M 2 \mid F 1, F 2) P(F 1, F 2)=$ $\underbrace{P(N \mid M 1, M 2, F 1, F 2)}_{\approx P(N \mid M 1, M 2)} \underbrace{P(M 1 \mid M 2, F 1, F 2)}_{\approx P(M 1 \mid F 1)} \underbrace{P(M 2 \mid F 1, F 2)}_{P(M 2 \mid F 2)} \underbrace{P(F 1 \mid F 2)}_{\approx P(F 1)} P(F 2)$

Efficient representation of PDs

Noisy-OR example Boolean \rightarrow Boolean

$P\left(E \mid C_{1}, C_{2}, C_{3}\right)$								
C_{1}	0	1	0	0	1	1	0	1
C_{2}	0	0	1	0	1	0	1	1
C_{3}	0	0	0	1	0	1	1	1
$P(E=0)$	1	0.1	0.1	0.1	0.01	0.01	0.01	0.001
$P(E=1)$	0	0.9	0.9	0.9	0.99	0.99	0.99	0.999

The effect (E) is off (false) when none of the causes are true. The probability for the effect increases with the number of true causes.

$$
P(E=0)=10^{-(\# T r u e)}
$$

(for this example)

Noisy-OR general case

 Boolean \rightarrow Boolean$$
\begin{aligned}
& P\left(E=0 \mid C_{1}, C_{2}, \ldots, C_{n}\right)=\prod_{i=1}^{n} q_{i}^{C_{i}} \\
& C_{i}= \begin{cases}1 & \text { if true } \\
0 & \text { if false }\end{cases}
\end{aligned}
$$

Example on previous slide used $\mathrm{q}_{\mathrm{i}}=0.1$ for all i .

Noisy-OR example (II)

- Fever is True if and only if Cold, Flu or Malaria is True.
- each cause has an independent chance of causing the effect.
- all possible causes are listed
- inhibitors are independent

Noisy-OR example (II)

- $P($ Fever \mid Cold $)=0.4 \Rightarrow q_{1}=0.6$
- $P($ Fever \mid Flu $)=0.8 \Rightarrow q_{2}=0.2$
- $P($ Fever \mid Malaria $)=0.9 \Rightarrow \mathrm{q}_{3}=0.1$

Noisy-OR example (II)

- $P($ Fever \mid Cold $)=0.4 \Rightarrow q_{1}=0.6$
- $P($ Fever \mid Flu $)=0.8 \Rightarrow q_{2}=0.2$
- $P($ Fever \mid Malaria $)=0.9 \Rightarrow \mathrm{q}_{3}=0.1$
$P(\neg$ Fever $\mid \neg$ Cold,\neg Flu,\neg Malaria $)=0.6^{0} \times 0.2^{0} \times 0.1^{0}=1$ $P($ Fever $\mid \neg$ Cold,\neg Flu,\neg Malaria $)=1-1=0$

Noisy-OR example (II)

- $P($ Fever \mid Cold $)=0.4 \Rightarrow q_{1}=0.6$
- $P($ Fever \mid Flu $)=0.8 \Rightarrow q_{2}=0.2$
- $P($ Fever \mid Malaria $)=0.9 \Rightarrow \mathrm{q}_{3}=0.1$
$P(\neg$ Fever $\mid \neg$ Cold,\neg Flu, Malaria $)=0.6^{0} \times 0.2^{0} \times 0.1^{1}=0.1$ $P($ Fever $\mid \neg$ Cold,\neg Flu, Malaria $)=1-0.1=0.9$

Noisy-OR example (II)

- $P($ Fever \mid Cold $)=0.4 \Rightarrow q_{1}=0.6$
- $P($ Fever \mid Flu $)=0.8 \Rightarrow q_{2}=0.2$
- $P($ Fever \mid Malaria $)=0.9 \Rightarrow \mathrm{q}_{3}=0.1$
$P(\neg$ Fever \mid Cold, Flu,\neg Malaria $)=0.6^{1} \times 0.2^{1} \times 0.1^{0}=0.12$ $P($ Fever \mid Cold, Flu,\neg Malaria $)=1-0.12=0.88$

Parametric probability densities
 Boolean/Discr./Continuous \rightarrow Continuous

Use parametric probability densities, e.g., the normal distribution

$$
P(X)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right)=N(\mu, \sigma)
$$

Gaussian networks (a = input to the node)

$$
P(X)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{-(x-\alpha-\beta a)^{2}}{2 \sigma^{2}}\right]
$$

Normal Distribution

Probit \& Logit Discrete \rightarrow Boolean

If the input is continuous but output is boolean, use probit or logit

$$
\text { Logit : } P(A=a \mid x)=\frac{1}{1+\exp [-2(\mu-x) / \sigma]}
$$

Probit: $P(A=a \mid x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-(x-\mu)^{2} / \sigma^{2}\right) d x$

The cancer network

Inference in $B N$

Inference means computing $\boldsymbol{P}(\mathrm{X} \mid \boldsymbol{e})$, where X is a query (variable) and \boldsymbol{e} is a set of evidence variables (for which we know the values).

Examples:
\boldsymbol{P} (Burglary \mid john_calls, mary_calls)
\boldsymbol{P} (Cancer \mid age, gender, smoking, serum_calcium)
\boldsymbol{P} (Cavity | toothache, catch)

Exact inference in $B N$

$\mathbf{P}(X \mid \mathbf{e})=\frac{\mathbf{P}(X, \mathbf{e})}{\mathbf{P}(\mathbf{e})}=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
"Doable" for boolean variables: Look up entries in conditional probability tables (CPTs).

Example: The alarm network

Example: The alarm network

What is the probability for a burglary if both John and Mary call? $\mathbf{P}(B \mid j, m)=\alpha \sum_{E=\{e, \neg e\}} \sum_{A=\{a, \rightarrow a\}} \mathbf{P}(B, E, A, j, m)$

Example: The alarm network

What is the probability for a burglary if both John and Mary call? $\mathbf{P}(B \mid j, m)=\alpha \sum_{E=\{\{, \neg\}\}} \sum_{A=\{a, \neg a\}} \mathbf{P}(B, E, A, j, m)$

Example: The alarm network

What is the probability for a burglary if both John and Mary call?

$$
\mathbf{P}(B \mid j, m)=\alpha \sum_{E=\{e, \neg e\}} \sum_{A=\{a, \neg a\}} \mathbf{P}(B, E, A, j, m)
$$

Example: The alarm network

Use depth-first search

A lot of unneccesary repeated computation...

Complexity of exact inference

- By eliminating repeated calculation \& uninteresting paths we can speed up the inference a lot.
- Linear time complexity for singly connected networks (polytrees).
- Exponential for multiply connected networks.
- Clustering can improve this

Approximate inference in $B N$

- Exact inference is intractable in large multiply connected BNs \Rightarrow use approximate inference: Monte Carlo methods (random sampling).
- Direct sampling
- Rejection sampling
- Likelihood weighting
- Markov chain Monte Carlo

Markov chain Monte Carlo

1. Fix the evidence variables (E_{1}, E_{2}, \ldots) at their given values.
2. Initialize the network with values for all other variables, including the query variable.
3. Repeat the following many, many, many times:
a. Pick a non-evidence variable at random (query X_{i} or hidden Y_{j})
b. Select a new value for this variable, conditioned on the current values in the variable's Markov blanket.

Monitor the values of the query variables.

